

Assembling Plasmids from
NGS data using MacVector

with Assembler

MacVector 17

for Mac OS X

Copyright statement

Copyright MacVector, Inc, 2019. All rights reserved.
This document contains proprietary information of MacVector, Inc and its
licensors. It is their exclusive property. It may not be reproduced or transmitted,
in whole or in part, without written agreement from MacVector, Inc.
The software described in this document is furnished under a license agreement, a
copy of which is packaged with the software. The software may not be used or
copied except as provided in the license agreement.
MacVector, Inc reserves the right to make changes, without notice, both to this
publication and to the product it describes. Information concerning products not
manufactured or distributed by MacVector, Inc is provided without warranty or
representation of any kind, and MacVector, Inc will not be liable for any
damages.
This version of the Assembler tutorial was published in May 2019.

Contents

OVERVIEW 4

OPTIMIZATION OF VELVET AND SPADES PARAMETERS 5

HOW TO SPLIT FASTQ FILES 5

ASSEMBLING WITH VELVET 7

ANALYZING THE CONSENSUS SEQUENCE 11
Circularizing Using a Right-Click Menu 11
Circularizing Using a Dot-plot Analysis 12

REPEATING THE ASSEMBLY 17

ASSEMBLY USING SPADES 18

CONFIRMING THE CORRECT SEQUENCE USING THREE CONTIGS 20
Determining Orientation 20
Changing Circular Origin 22

CONFIRM IDENTITY USING MULTIPLE SEQUENCE ALIGNMENT 23

Overview
The tutorial will show you how to use MacVector with Assembler to assemble
plasmid sequences from NGS data. This particular example uses a sample set for
an anonymous plasmid consisting of a pair of files;
plasmid-1_S5_L001_R1_001.fastq
plasmid-1_S5_L001_R2_001.fastq
These files are each 285.3 MB in size and each contain approximately 1,375,000
reads of 75nt in length for a total number of sequenced residues of approximately
20.6 million. The plasmid is 8,859bp in size, so this means every residue in the
plasmid has been sequenced an average of 2,328 times. This massive over-
sequencing causes some considerable problems – most of the de novo assemblers
have been tuned to assemble sequences such as bacterial chromosomes, where
you might have a 1 Mb to 10 Mb sequence with an average coverage of just 20-
200 fold, or even less.
MacVector uses two different assemblers for de novo assembly of NGS reads.
Velvet: We chose this because it is capable of assembling 20-50million+ reads
into 10 Mb+ sequences with relatively minimal memory requirements, so it can
be used on personal Macintosh computers with as little as 8 GB of RAM.
However, the more RAM you have the better.
SPAdes: This is a more recent assembler with an even smaller memory footprint
that does a slightly better job getting past repeats, resulting in longer contigs. It
also requires less tweaking of parameters to get optimal assemblies. However, it is
significantly slower than Velvet.
As with most of these de novo assemblers, you can supply Velvet or SPAdes with
too much data. When your coverage is only ~100x or less, Velvet will ignore the
occasional read that has a sequencing error. However, once you get into the
200+x range, the ~5% or so of reads that have errors suddenly can be assembled
into their own contigs due to random similar errors. This confuses the assembler
as it thinks it is trying to resolve closely related direct repeats. Eventually it gets
confused enough that it can’t resolve all of the similar contigs and typically gives
up and reports only those contigs that have few ambiguities. These often represent
just a small portion of the sequenced molecule.
Experiments with the plasmid data set (see below) indicate that only the first
10,000 reads of each file is really required to generate a clean unambiguous
sequence for the plasmid. 20,000 x 75nt reads = 169x coverage of the 8.9 kb
plasmid.
This tutorial will run through the optimized assembly of the plasmid, using both
assemblers, and also showing how you can repeat the assembly in triplicate and
confirm the results to be confident the sequence is correct.

Optimization of Velvet and SPAdes Parameters
The plasmid data set was split into a series of smaller files and used in a
comprehensive set of assembly experiments using MacVector. The Velvet
implementation in MacVector can only take a single KMER value, and it should
be an odd value between 11 and 255. In general, a value of about two-thirds of the
average length of the input reads is a good place to start. During assembly, reads
are initially aligned by looking for perfect matches of length KMER, so there is
no point to having KMER be longer than the average length of the reads. The
SPAdes implementation lets you input multiple values and it will try them all,
keeping the results for the value it believes to be optimal. In theory, you could
enter every potential (odd) KMER value up to the length of the reads, though in
practice that results in a very slow assembly. In the example below, SPAdes was
run with values of “31,41,51,61,71”;

The above table lists the longest contig resulting from each assembly. Those in
black could be circularized to create the correct plasmid sequence. Those in red
could not.
It is immediately obvious that there is a relationship between the number of reads
in the assembly and the optimal Velvet KMER. Assemblies using 60,000 reads (2
x 30,000) gave the best results with the broadest range of KMER values. With the
multiple KMER values used, SPAdes did a much better job of successfully
assembling the complete sequence from a wide range of input reads, but even so,
it could not assembly the complete set.

How to Split Fastq Files
MacVector does not have a built-in function to split fastq files. However, over the
years we have developed a few utilities to help this. One such utility is
“SplitFastqFile.app”. You can download this from our web site on the
macvector.com/Downloads page.
After downloading SplitFastqFile.app.zip, make sure it has been extracted
(double-click to extract if it has not) and move SplitFastqFile.app to a convenient
location e.g. your desktop.

pRGN7782 - 8859bp VELVET (KMER) SPADES (KMERS)
Total Reads 35 39 43 47 51 55 59 63 67 71 31,41,51,61,71

20,000 8,870 8,897 8,901 8,905 8,909 8,830 8,795 8,795 2,754 531 8,930
40,000 8,870 8,897 8,901 8,905 8,909 8,913 8,917 8,921 8,806 1,469 8,930
60,000 8,870 8,897 8,901 8,905 8,909 8,913 8,917 8,921 8,890 2,281 8,930

100,000 7,855 7,886 7,894 8,891 8,895 8,899 8,917 8,921 8,890 6,542 8,930
160,000 7,844 7,886 7,894 7,914 8,909 8,899 8,917 8,921 8,923 8,561 8,930
240,000 7,847 7,855 7,884 7,902 8,348 8,899 8,917 8,921 8,925 8,686 8,930
350,000 7,722 7,855 7,877 7,355 7,363 7,371 8,917 8,921 8,925 8,928 8,930
500,000 7,723 7,873 7,877 7,892 7,900 7,908 8,903 8,921 8,925 8,929 8,930
700,000 7,713 7,716 7,893 7,874 8,889 7,926 8,907 8,925 8,929 8,930

1,000,000 4,634 7,721 7,724 7,705 7,926 8,907 8,925 8,929 8,930
2,740,000 683 8,522 7,519 7,480 7,870 7,546 8,929 4,445

Locate the fastq file(s) you want to split into smaller segments, select them (you
can select more than one if you wish), then drag and drop them onto the
SplitFastqFile.app icon.
You will first be prompted for the number of reads to be saved into each split file;

Lets use 30,000 as we will see this is more than enough for this data set and gave
the best results in the analysis described above (complete assemblies can be
generated with fewer than 10,000 reads from each starting file).
Next you will be prompted for an output folder;

I created a new folder called Split30000 to save the files into.
Next you will be asked for a “Prefix” for the saved files for the first file (plasmid-
1_S5_L001_R1_001.fastq);

The full name is rather a mouthful so I compacted this to just “plasmid-R1-“. The
files will be generated with names adding “aaa”, “aab”, “aac” etc onto the Prefix,
so we should get filenames like plasmid-R1-aaa.fastq, plasmid-R1-aab.fastq,
plasmid-R1-aac.fastq etc.

When you click OK, your will see a “Job Running” dialog flash in and out of
existence. Behind the scenes the file is being quietly and efficiently split. After a
few seconds, you will get prompted for a prefix for the second file;

I just named this …R2- to distinguish it from the first.
When the second file has been split you will get a message that the file extensions
are being fixed, followed by a message letting you know the processing is
complete;

If you look in the output directory you should see all of the split files;

Assembling with Velvet
The next phase is to assemble the reads into contigs. We will do this in triplicate –
we have lots of split files, so let’s repeat the assembly with three sets of
independent data and see if we get the same answer.

Choose File | New | Assembly Project. An empty Assembly Project window will
open. Click on the Add Seqs toolbar button and navigate to the folder where you
saved the split files;

Select the first three “R1” files - …R1-aaa, …R1-aab and …R1-aac and click on
the Open button.
Repeat, but this time, choose the first three “R2” files;

Now select the pair of …aaa.fastq files in the Assembly Project window (use the
command key to toggle selections on and off) and click on the Velvet icon;

A Velvet setup dialog appears;

The most critical parameters in this are the Hash (K-MER”) setting and the
checkbox to let Velvet know you are using paired-end read files.
The K-MER value is generally the first parameter you should consider changing.
It should have an odd value between 11 and 255. For Illumina reads like these, a
good starting point is to aim at two-thirds of the read length. So, we will try 51.

The remainder of the parameters we will leave as the default. Click OK.
A progress dialog will appear. The entire assembly should take just a few
seconds, then a new “Contig 1” entry appears in the Assembly Project window;

The fact that a single contig appears is a good thing. It is also in the size range we
would expect for our plasmid. Double-click on Contig 1 to open up the Contig
Editor window;

The Editor tab shows the aligned reads with the consensus across the top. Note
that Velvet renames the reads, so unfortunately the names in the left hand margin
do not correspond to names in the original fastq file. Unlike ABI contig
assemblies, this assembly is NOT editable. The displayed alignment is for
informational purposes only. You can click on the Dots toolbar item to get a feel
for the quality of the alignment;

In this case, the alignment is pretty good, with just a couple of mismatched
residues in one of the reads.

Perhaps more informative is the Map tab;

Here we can see a coverage map of the reads across the assembly. You can see
that while the average is around 400x, there are some regions with over 1000x
coverage and one region, centered around 2800, that has only about 30x coverage.
The Summary tab has more information on the coverage;

One thing to note about the Summary output is that Velvet does not assign quality
values to the consensus sequence (in contrast to phrap, which generates quality
values for every base in the consensus). Thus the Summary will always report that
all of the residues are of poor quality – this can be ignored.

Analyzing the Consensus Sequence
Circularizing Using a Right-Click Menu

In common with other de novo assemblers, Velvet will not automatically
circularize sequences, so we have to do that manually. Luckily, MacVector

provides several functions to simplify this. By far the easiest to use is a new
feature added in MacVector 16.0.1. In the Editor tab of the Contig window, right-
click (<ctrl>-click if you don’t have a right mouse button) and a popup context-
sensitive menu will appear;

The menu item we are interested in here is the one at the bottom. If the contig has
direct repeats at the ends, the item will be active and will have text similar to
“Circularize Consensus (50 nt overlap)”, where it will report the actual length of
the overlap. This needs to be at least 15 nt. In the absence of direct repeats, the
menu item will be disabled and have the text “Cannot Circularize Consensus”. If
you select the menu item, a new circular sequence document window appears.

Save this sequence as plasmid-1.nucl.

Circularizing Using a Dot-plot Analysis

The right-click menu approach works fine most of the time. But, if you do not
have a perfect repeat at the ends of the contig, you may need to manually
circularize the molecule. Here’s how to do that so you can explore any similarities

at the ends and potentially spot and fix sequencing errors that might prevent
circularization.
First, to simplify the analysis, lets retrieve the consensus sequence from Contig 1.
There are several ways to do this (e.g. you can File | Export as a single MacVector
Nucleic Acid sequence), but perhaps the simplest is to use the right-click menu
again and select the Export Consensus Without Gaps… item;

The next step is to circularize the molecule. But first we have to work out if there
is an overlap between the beginning and the end of the sequence. One important
thing to know about Velvet is that when it assembles a circular molecule, it tends
to produce duplications at the beginning and end of approximately the value of K-
MER. You may remember we used a value of 51 for this, so we are going to
expect a duplication of approximately that value. This is just a rough guide – it is
never longer than this, but frequently it is shorter, particularly with low coverage
assemblies.
One quick way to look for direct repeats in a DNA molecule in MacVector is to
use the Dot Plot functionality. With the new sequence window active, choose
Analyze | Create Dot Plot | Pustell DNA Matrix;

Set the Window Size to 20 (or a value that is significantly less than the expected
overlap between the ends) and Minimum % Score to 95%, as we are expecting
essentially identical overlaps at the ends. Make sure you are comparing the new
sequence (Untitled 2 in this case) against itself. Click OK.

The Matrix Plot usually gives a good overview of the similarities between two
sequences, or of direct repeats within a sequence. The long black diagonal line
indicates the expected end-to-end identity when you compare a sequence to itself.
In this case we are hoping to see direct repeats at the ends of the sequence –
unfortunately, these are hard to see at the fully zoomed out resolution, though if

you look carefully you can see small “blips” at the circled corners. You can click
and drag in the corners to “zoom” into those regions;

Once zoomed in. the diagonal representing the repeat is much easier to see. Even
more clear, is to simply click on the Aligned Sequence tab;

The repeat from the end of the sequence is now clearly shown aligned to the
beginning. We can see that it does look to be right about 50nt in length.
So, now we know that we do have the expected repeat, indicating that we have
truly sequenced a circular sequence that is “wrapping around, we need to truncate
the sequence to remove the duplicated segment. By far the easiest way to do this

is to use MacVector’s Find functionality. Close the Dot Plot result window and
select the first ~20 nt in the sequence. If there was a mismatch in the alignment,
you should make sure that residue is not included in the selection.

Choose Edit | Copy to copy the sequence, then choose Edit | Find | Find… Paste the
copied sequence into the Find edit box;

Click on the Find button – it will simply re-select the first ~20nt in the sequence
window. Then click Find Next. You should see that it finds a match close to the
end of the sequence;

This is the start of the duplicated region at the end. To extend the selection to the
end of the sequence, hold down the <shift> key and click just beyond the last
character;

Now press the <delete> key to remove the duplication. Finally, click on the
Topology button to circularize the sequence. then File | Save it under a suitable
name (e.g. pRGN7782-1). We have the sequence of our plasmid!
Of course, if you had a mismatch in the repeat region, you would now need to
confirm the sequence at the ends. We will look at some ideas on how to do that
later on.

Repeating the Assembly
Lets double-check that the sequence is correct. We imported 3 pairs of files into
our original Assembly Project. So we can repeat the assembly using the aab and
aac pairs.
Select the aab pair of files and click the Velvet button;

You will get a warning dialog about contigs already having been created;

In this case, we know we are assembling a different pair of files, so we can safely
click the No button as we don’t want to delete Contig 1.
After assembly, we see a new Contig 2 item.

Repeat the previous steps to circularize the sequence and save it as pRGN7782-2.

Assembly using SPAdes
For the third set of files we will try using the SPAdes assembler. Select the pair of
…aac.fastq files and click on the SPAdes toolbar button.
Note that we are going to use a custom K-MER – type the values 31,41,51,61,71
into the box. The values must be odd and must be separated by commas. You
must also provide at least 3 values. You can add odd values up to 127.
Unlike Velvet, SPAdes does not create alignments, it merely generates a list of
consensus sequences. If you are interested in looking at the actual alignments,
then MacVector offers the option of running a Bowtie alignment on each of the
consensus sequences. This is very useful for visualization, so we will select that
option too.

With such a small data set, SPAdes will still complete in just a few seconds.
However, with larger genomic data sets, this can take several hours.

Note that SPAdes uses a different naming convention for the contigs, calling them
“NODE_x_length_<len>_cov_<coverage>” which MacVector honors in the
display. Again, you can double-click on the longest contig to open up the Contig
Editor window. Note that because Bowtie retains the read names, you can see the
original read names in the assembly.

Again, you can right-click in the Editor tab to see if the contig can be circularized.
In this case we have a 71 nt overlap. Create the new circular sequence and save it
as pRGN7782-3.

Confirming the Correct Sequence using Three Contigs
So, now we have our three circular contig sequences, each generated from a
different set of input reads. However, before we can compare them to make sure
they are identical, there are two additional factors to consider;
(a) Orientation – contigs can be created in one of two orientations. We need to

make sure that all three are in the same orientation before we can do the
comparison.

(b) Circular Origin. - the assemblers essentially choose a random location for
the start of the assembly. Thus, when we circularize, the contigs are likely to
be “split” in a different location. We need a way to ensure they are all split at
the same point.

Determining Orientation

The easiest way to determine orientation is to use MacVector’s dotplot analysis
function. Close all open windows except for the three circular plasmids, plasmid-
1, -2 and -3. Choose Analyze | Create Dot Plot | Pustell DNA Matrix, select plasmid-
1 in the left column and plasmid-2 in the right. Set the Minimum % Score to 95;

Run the analysis and take a look at the Matrix Plot result tab;

In this plot (your results may vary) there are two diagonal lines of identity.
Because the plots are blue and travel from lower left to upper right, this indicates
that this is an inverted match i.e. the two contigs are in different orientations. The
fact that there are two lines, indicates that they have different circular origins.
Repeat the dot plot with the other two combinations – 1 vs 3 and 2 vs 3;

In this case, 1 vs 3 (left) indicates that -1 and -3 are also in the opposite
orientation, but 2 vs 3 (right) are in the same orientation as indicated by the black
plots travelling from top left to bottom right.
The easiest thing to do is “flip” the orientation of plasmid-1 so that it matches the
other two. To do this, simply bring that plasmid to the front, use Edit | Select All to
select the entire sequence, then choose Edit | Reverse & Complement to “flip the
sequence. Don’t forget to save it!

Changing Circular Origin

If we look at the Map tab of pRGN7782-1, the unique restriction enzymes are
easily identifiable as they appear in red;

In this case, there is a unique EcoRI site at (6286). Let’s make this the new
circular origin. Click on the site to select it, then right-click (or <ctrl>-click) to
view the context-sensitive menu;

Choose the Set Circular Origin item and the Map refreshes to show the plasmid
rotated with the EcoRI site now at the 12 o’clock position.

Save the file and repeat with the EcoRI sites in pRGN7782-2 and pRGN7782-3.

Confirm Identity using Multiple Sequence Alignment
With the three rotated plasmid sequences open, choose Analyze | Align Multiple
Sequences Using | ClustalW;

Make sure you have all three plasmids selected, then click OK. After the
alignment has completed you should have a window like this;

You can scroll through the alignment if you wish, looking for any mismatches,
but the most useful tabs from this perspective are the Pairwise tab and the Matrix
tab. The Pairwise tab shows each sequence aligned with each other sequence. The
header for each alignment lists the gaps and identities between the pair of
sequences;

Here it’s clear that plasmid-1 and plasmid-2 are identical with no gaps.

The Matrix tab simple summarizes the combinations of pairwise alignments;

Here we can clearly see that all three plasmids share 100% identity with each
other. With this confirmation of the sequence from three different sets of reads,
we can be extremely confident that we have accurately determined the sequence
of our plasmid.

