MacVector 17

for Mac OS X

RNA-Seq Human Transcriptome Tutorial

Maclector Inc.

Software for Scientists

Copyright statement

Copyright MacVector, Inc, 2019. All rights reserved.

This document contains proprietary information of **MacVector**, **Inc** and its licensors. It is their exclusive property. It may not be reproduced or transmitted, in whole or in part, without written agreement from **MacVector**, **Inc**.

The software described in this document is furnished under a license agreement, a copy of which is packaged with the software. The software may not be used or copied except as provided in the license agreement.

MacVector, Inc reserves the right to make changes, without notice, both to this publication and to the product it describes. Information concerning products not manufactured or distributed by **MacVector, Inc** is provided without warranty or representation of any kind, and **MacVector, Inc** will not be liable for any damages.

This version of the RNA-Seq Human Transcriptome Tutorial was published in August 2019.

Contents

CONTENTS	3
INTRODUCTION	4
SAMPLE FILES	4
STRATEGY	4
MACHINE REQUIREMENTS	5
TUTORIAL	5
Download and Prepare Human Transcriptome	5
RNA-Seq Alignments using Bowtie	7
Exporting Data Into Microsoft Excel	11
Identifying Transcripts	14
Modifying Bowtie Parameters	17

Introduction

MacVector with Assembler is capable of analyzing gene expression levels using the popular Next Generation Sequencing (NGS) "RNA-Seq" approach (also known as "whole transcriptome shotgun sequencing"). RNA from a source is isolated (potentially with enrichment for the type of RNA of interest), reverse-transcribed, then randomly sequenced using a high throughput NGS platform, such as Illumina HiSeq or MiSeq. The entire set of reads are then computationally aligned to an annotated reference genome and the relative abundance of transcripts from each transcribed gene determined by software.

There is an existing MacVector tutorial that uses a short bacterial reference genome and RNA-Seq data to illustrate the basic concept – see RNA-Seq Expression Analysis Tutorial.pdf.

This tutorial extends the concept to show how it is easily possible to analyze human RNA-Seq data using MacVector, even on a fairly modest laptop computer.

Sample Files

The data used in this tutorial is not included in a standard MacVector installation because of the size of some of the data files. You can download the appropriate files using this link;

https://macvector.net/humantranscriptomesampledata.zip

Strategy

While it is (just) possible to align RNA-Seq data against the complete human genome with MacVector, that does require a fairly high-end machine with a LOT of RAM and even then, the analysis usually needs to be split into multiple tasks. It is far quicker, and requires less computational resources, to run the analysis against the human transcriptome i.e. just the known transcripts. There are several sources for this – our example will use the data collated by <u>GENCODE</u>.

The steps we will use are;

- (a) Download the latest GENCODE human transcript data.
- (b) Concatenate the individual transcripts in that data to create a single reference sequence with the location of each transcript annotated appropriately.
- (c) Align a pair of RNA-Seq Illumina reads against the transcriptome reference using the popular *Bowtie* algorithm.
- (d) Ask MacVector to create a table listing how many reads aligned to each transcript along and calculate some basic statistical analysis.
- (e) Import the data into *Microsoft Excel* for further analysis.

Machine Requirements

The total CPU time is noted for each major computational step during the tutorial. Initial timings were generated using a fairly high end (as of June 2019) 15" MacBook Pro with 32 GB RAM and a 6-core 2.9 GHz Intel Core i9 processor. While we recommend using machines with as much RAM as you can afford, as this is often the limiting factor, this entire workflow can be carried out on much more modest machines. 16 GB RAM is probably the practical lower end for human transcriptome analysis, but CPU speed is of less concern. Most of the analyses shown here used less than 6 MB RAM when running except where noted.

Tutorial

Download and Prepare Human Transcriptome

If you downloaded the combined zip file for this tutorial, then you have the MacVector file, all ready to go; gencode.v26.pc_transcripts.fa.nucl

This is how to generate an updated version of that file, or adapt this to your favorite transcriptome (GENCODE has a mouse version, for example, and other sites have versions for many other species).

In a browser, navigate to;

https://www.gencodegenes.org/human/ and scroll down the page to the Fasta files section and click on the Fasta download link for "Transcript Sequences". This contains all known human RNA transcripts . Currently, this points to ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_30/g encode.v30.transcripts.fa.gz. This usually gets uncompressed during download

download.

The file is currently (June 2019) 354 MB.

Create a new folder somewhere on your hard drive where you can store data files and run the analysis. E.g. create one in your home folder called HumanTranscriptome. Move the downloaded Xxxtranscripts.fa file to this folder.

Now we are ready to convert this fasta file into a GenBank formatted file that we can import into MacVector.

Copy the FASTAtoAnnotatedGB.pl script file into the folder you created.

You most likely downloaded this file from the MacVector website, along with the data for this tutorial. Alternatively, for MacVector 17.1 and later, it is located in the /Applications/MacVector/Applescripts/ folder.

It is not strictly speaking necessary to copy the script to this location, but it simplifies the command line arguments below if you are not familiar with the use of Terminal.app.

Open Terminal.app (you can find this in /Applications/Utilities/).

We now want to change the current directory to the directory you created above. If you are familiar with command lines on the Mac, simply "cd" to that directory, otherwise, follow these instructions;

In the Terminal.app window, type "cd" then press the <space> bar. Switch to the Apple *Finder* application, navigate to the parent of the folder you created, select the new folder and drag it onto the Terminal window.

You should see something like this;

	HumanTranscriptome — -bash — 70×12
Last login: Tue	Jun 25 07:05:53 on ttys000
MacBook-Pro-3:~	<pre>kendall\$ cd /Users/kendall/HumanTranscriptome</pre>
MacBook-Pro-3:H	umanTranscriptome kendall\$

Now you are ready to run the conversion script to create a new GenBank file containing all of the transcripts concatenated into a single large annotated sequence.

Type (or copy/paste) the following command (substitute your specific filename as appropriate) and press <return>; ./FASTAtoAnnotatedGB.pl gencode.v30.transcripts.fa - sort=forward

A single prompt should appear describing what will happen – accept appropriately, unless something appears way off. During processing, you may get warnings about missing *Description* values. You can ignore these. On a MacBook Pro, processing takes about two minutes.

Open MacVector. Choose File | Open and navigate to your transcriptome folder and select the new ...transcripts.fa.gb file that should be in there and click OK.

It will take some time to open this file. Initially it will appear as if you had not clicked the **OK** button as MacVector tries to parse the contents of the file. However, you will be prompted to confirm that you want to continue importing the sequence because the sequence is so large with very many features. On a MacBook Pro, the entire import took about one minute.

You now have a file with a \sim 323 Mbp concatenated sequence containing \sim 210,000 "gene" features, each of which is annotated with a /dbxref qualifier that references the identifiers of the original transcript.

Choose File | Save As... and save the file with a suitable filename. For the data used in this tutorial, that is gencode.v30.transcripts.fa.nucl

The final file takes about 45 seconds to save on the MacBook Pro and is about 395 GB on disk.

That's it! You now have a reference sequence that contains every known human transcript that you can use for RNAS-eq experiments.

RNA-Seq Alignments using Bowtie

The next step is to align the sample RNA-Seq reads to our new human transcriptome so that we can evaluate expression levels.

For this we are going to use a very reduced sample set to reduce processing time. You should have downloaded this sample set with the files required to run this tutorial.

First choose File | New | Assembly Project to create a new project. Then click on the Add Ref button and select your new

gencode.v30.transcripts.fa.nucl reference sequence to import it. Finally, click on the Add Reads toolbar button, navigate to the location of the sample files, select forward.fastq and reverse.fastq (hold down the <option> key for multiple selections) and click OK to add them to the project.

You should have a project looking something like this;

•	•						Unt	itled -	Pro	ject					
4		1	¥.	93 (24 6	2	7.	. 0		्य	-	2		0.5	Q~Name
Add F	eads Add Seq	s Add Ref	Add Contig	Remove R	leset Pr	efs R	eplica	Phred	Cro	ssMatch	Phrap	Bowtie	SPAdes	Velvet	Filter
1	Project	Proper	ties	Coverage											
N	ame		Status		Lengt	h ∼	#		CI	ClipR	5	st	Definiti	on	
100	gencode.v30	.transcript	s REF		3236	39760			1	32363	97				
	forward.fasto	1	Ilumina	a Paired-e		100	10	10000					/Users/	kendall/Hur	manTranscriptome/forward.f
100	reverse.fasto		Ilumina	a Paired-e		100	10	10000					/Users/	kendall/Hur	manTranscriptome/reverse.f

Select all of the files and click on the **Bowtie** toolbar item.

The defaults will work fine for this example. Note in particular that *Hit Reporting* is set to **Report Best Hit only**;

Bowtie Options	Read pre-processing
Preset: Sensitive Type of Alignment: Local No gaps within first bases of read: Number of Threads: 7	 Discard reads less than Trim ends with quality less than Trim N's from ends Discard short reads that contain any N's
 ✓ Use paired-end alignments Minimum insert size: 0 Maximum insert size: 500 Orientation: Forward - Reverse 	Hit Reporting
Generate child contigs Check this box if you are using the Reference as a scaff individual alignments. For other tasks (e.g. SNP analysis	iold to assemble related reads, or if you want to 'drill down" into s or RNA-Seq expression analysis) leave this unchecked. Defaults Cancel OK

This setting means that each read will only align at a single location on the reference sequence. However, because of splice-site variations, pseudogenes and possible duplicated entries in the reference dataset, this may mean that some valid alignments will be missed. The implications will be discussed later with suggestions for alternative settings.

Click OK and wait.....

The sample files have about 1 million x100nt reads each. On the MacBook Pro, this takes about 20 minutes to align. Once complete, a new job object appears in the project window.

•	•		Untit	led — Proj	ect				
	'님 '꽃 김 북	ા 🦉 🙀		• °	्म	🙀 🗞	🏩 🏩	Q~ Nam	ne
Ad	d Reads Add Seqs Add Ref Add	Contig Remove Reset	Prefs Replic	a Phred C	rossMatch	Phrap Bowtie	SPAdes Velve	et	Filter
	Project Properties	Coverage							
	Name	Status	Length v	#	ClipL	ClipR	Start	Stop	Definition
10g	gencode.v30.transcripts.fa	REF	32363976)		1 3236397			
	forward.fastq	Ilumina Paired-e	100	0 101000	0				/Volumes/D
	reverse.fastq	Ilumina Paired-e	100	0 101000	0				/Volumes/D
-982	▼ Bowtie 1 - 12:29 - Jun 27, 2								
	Unaligned_Reads_1_1.fq.gz	Ilumina Paired-e	100	43774	3				/var/folders
	Unaligned_Reads_1_2.fq.g	z Ilumina Paired-e	100	43774	3				/var/folders
ĝπ,	gencode.v30.transcripts		323639958	3 1156702	8				

Note that the reads that did not align are shown as a pair of Unaligned_Reads files. There are times when these might be exactly the files you want e.g. if you wanted to filter out all human RNA sequences in order to enrich for bacterial or virus sequences in blood samples.

The aligned reads are included in the contig object called gencode.v30.transcripts.fa Contig 1.

Double-click on the Contig 1 object to open the Contig Editor													
• • •				g	encode.v30	.trans	cripts.fa Co	ntig 1	— Editor				
Locked Text View	© Prefs	Replica		Add Seqs	Remove Seqs	(a) Align	<mark>0</mark> ∽ Translations	AGCT AGCT Dots	ACGTAC	ACGTAC	Width		
Editor		Мар	Fea	atures	Annotatio	ns	Summary	, [Coverage	SNPs		VCF	
gencode.v30.tripts SRR5330989.699034. SRR5330989.699034.	s.fa Cont Conser .1 .2	tig 1 GTTAAC	10 CTTGCCGTC	20 AGCCTTTTC AGCCTTTTC AGCCTTTTC	30 ITTGACCTCTTC	40 TTTCTC TTTCA TTTCA	59 STTCATGTGTAT	ттосто	60 70 STCTCTTAGCCCAGA	89 CTTCCCGTGTCCT	90 TTCCACCGGGC	100 CTTTGAG	AGGTCACAGG

If you like, you can scroll through the entire assembly, viewing the actual aligned sequences, but there is typically little need to do this for these types of experiments.

Click on the Map tab.

The **Map** tab can take a few seconds to calculate and draw due to the size of the sequence. It typically completes in less than 30 seconds;

The green bar is actually a graphic showing all 210,000 transcripts superimposed on top of each other. The lower graph is the distribution of aligned reads across the reference.

You can "zoom in" to view the coverage in more detail.

Pick one of the taller peaks and carefully select a short section on either side of it by clicking and dragging with the mouse or trackpad. The response may be a little sluggish at first due to the size of the reference. Repeat the drag until you can clearly see the individual reads.

	•					gencode	.v30.trans	cripts.fa Co	ontig 1 -	— Мар		
		0	- - -		Q		素 🔍	× ×	0.	• 💾 🖞		1
Locked	Text View	Prefs	Replica	Add Seqs	Remove	Align Gra	phics RE Pic	ker Digest	100%	Preview Cre	eate Edit Delete	Range
E	ditor	1	Мар	Fe	atures	Anno	ations	Summary	, [Coverage	SNPs	VCF
							gencode.v3	0.transcripts	s.fa			
- 7												
_	_											
21	5438400	215	444142 (61) ENSTOO	00061878	6.1 ENSG	000027616	8.1 - - RN7S	L1-201 F	RN7SL1 299 mi	sc_RNA 215444400	215445000 215445600
SNPs												
INDELs	/	db_xref	=ENST000	00618786	5.1 ENSG0	00002761	58.1 - - RN7	SL1-201 RN	7SL1 299	9 misc_RNA		
328	_										4	
287												
246											n	
164												
123			- 6									
123 82		M	M									
123 82 41	(M	M			1						

If you hover the pointer over one of the green arrows, a tooltip appears with the annotation for that transcript.

Click on the Coverage tab.

This is the tab that lists the coverage for each transcript. There is a lot of data to process, so the content of the tab can take some time to appear (it is only generated when you click on the tab to save processing time for those cases where this information is of no interest). On the MacBook Pro, the tab took 90 seconds to calculate and display. But, once calculated, you can switch back and forth between tabs and it does not need to be calculated again while the contig 1 window remains open.

•••		genco	ode.v30.transc	pripts.fa	Contig 1	— Covera	ge			
	Dealies Date									
Locked Prets	Replica Dots									
Editor	Мар	Features	Annotations	Su	mmary	Coverage	•	SNPs	VCF	
Coverage repor	t for gencode.v3	0.transcripts.	fa Contig 1							1
Average covera	age depth in sele	ct features:								
Name		Туре	Start	Stop	Length	Denth	# Reads	BÞKM	ТРМ	
ENSTRAGON/5632	28 21ENSC0000223	gene	1	1657	1657	BCPCH ,	13	0 68	0.84	
ENST0000045032	15 21ENSG00000223	gene	1658	2289	632	0	13	0.00	1 19	
ENST0000048814	7.1 ENSG00000227	gene	2290	3640	1351	õ	37	2.36	2.94	
ENST0000061921	6 1 ENSG0000278	gene	3641	3708	68	õ		0.00	0.00	
ENST0000047335	8.1 ENSG00000243	gene	3709	4420	712	õ	ž	0.24	0.30	
ENST0000046928	39.1 ENSG00000243	gene	4421	4955	535	Ō	2	0.32	0.40	
ENST000060709	6.1 ENSG0000284	gene	4956	5093	138	Θ	Θ	0.00	0.00	
ENST0000041732	4.1 ENSG00000237	gene	5094	6280	1187	Θ	67	4.86	6.07	
ENST0000046146	57.1 ENSG0000237	gene	6281	6870	590	Θ	64	9.33	11.66	
ENST000060685	57.1 ENSG00000268	gene	6871	7710	840	Θ	Θ	0.00	0.00	
ENST0000064211	L6.1 ENSG00000240	gene	7711	9124	1414	Θ	Θ	0.00	0.00	
ENST0000049284	12.2 ENSG00000240	gene	9125	10063	939	Θ	Θ	0.00	0.00	
ENST0000064151	L5.2 ENSG00000186	gene	10064	12681	2618	Θ	Θ	0.00	0.00	
ENST0000033513	37.4 ENSG00000186	gene	12682	13735	1054	Θ	Θ	0.00	0.00	
ENST0000046643	30.5 ENSG00000238	gene	13736	16483	2748	Θ	112	3.51	4.38	
ENST0000047774	10.5 ENSG00000238	gene	16484	16974	491	Θ	Θ	0.00	0.00	
ENST0000047124	8.1 ENSG00000238	gene	16975	17603	629	Θ	112	15.32	19.14	
ENST0000061054	2.1 ENSG00000238	gene	17604	18326	723	Θ	2	0.24	0.30	
ENST0000045357	6.2 ENSG00000238	gene	18327	18662	336	0	0	0.00	0.00	
ENST0000049557	6.1 ENSG00000239	gene	18663	19981	1319	Θ	58	3.78	4.73	
ENS1000044298	37.3 EN5G00000233	gene	19982	23/93	3812	0	18/	4.22	5.27	
ENS10000049414	19.2 ENSG00000268	gene	23/94	24548	/55	0	2	0.23	0.28	
ENS10000059591	19.1 ENSG00000269	gene	24549	24832	284			0.00	0.00	
ENST000049375	7.1 ENSG00000239	gene	24833	25155	323	U 2	25	0.00	8.32	
ENS1000048485	9.1 ENSG00000241	gene	25156	30015	4860	2	503	8.91	11.12	
ENST000049095	7 CIENSCOOD0241	gene	20524	21024	1201	0	122	3.99	4.90	
ENST000040003	7.01ENSC00000241	gene	21025	22112	1301	0	122	0.07	10.00	
ENST0000049190	1 1 I ENSCOOD00241	Selle	31033	322112	2/0	0	*4	1 65	2 07	
ENSTABAAAAAAAA	88 11ENSG0000222	gene	32113	32672	457	0	2	1.05 0.56	2.07	
ENST000043040	1 21ENSG00000241	gene	32674	33743	570	0	7	1 06	1 32	
ENST0000062308	3.41ENSG00000279	gene	33244	34640	1397	õ	53	3.26	4.08	

The columns are;

- Name the first 30 characters of the transcript name.
- **Type** the type of feature. The FastatoAnnotatedGB.pl script assigns gene features to each transcript, but for annotated genomes these may be other types.

- **Start** the start location of the transcript in the concatenated reference sequence.
- **Stop** the stop position
- Length the length of the reference transcript
- **Depth** the average depth of coverage, rounded down. These reads are 100 nt in length so e.g. 13 reads across a 1,657 nt transcript still comes out to a coverage of <1x.
- # Reads the number of reads that aligned to the transcript.
- **RPKM** Reads Per Kilobase of transcript, per Million mapped reads. This is a normalized unit of transcript expression that scales by transcript length to compensate for the fact that most RNA-Seq protocols will generate more sequencing reads from longer RNA molecules.
- **TPM** Transcripts Per Kilobase Million. When you use TPM, the sum of all TPMs in each sample are the same. This makes it easier to compare the proportion of reads that mapped to a transcript across different samples.

Exporting Data Into Microsoft Excel

While MacVector does not currently have an interface to compare and analyze RNA-Seq samples from multiple experiments, it's easy to export the data from the coverage tab as it is displayed in tab separated format.

Carefully select the first few lines of the **Coverage** tab data, starting at the *Name* column header. Now scroll to the bottom of the data, hold down the <shift> key and click just after the last TPM data item and the entire text table should select. Choose the **Edit | Copy** menu item.

This will copy the text to the clipboard, so we can now switch to *Microsoft Excel* to paste the data. This tutorial used *Excel* version 16.26 as distributed with *Office 365*. This approach should also work with other spreadsheet-like applications.

Switch to *Microsoft Excel*. Create a new blank workbook and click in cell A1. Choose Edit | Paste Special... then select the *Text* option in the resulting dialog and press OK.

	Paste Spec	sial
Source: Paste: Paste link: As:		
HTML Unicode Text Text		
Result	Inserts the contents of the Clipboard as a Text format.	Display as icon
		Cancel OK

The data should get pasted into *Excel* with each data item in its own separate cell and column headers just as they appeared in MacVector.

•		AutoSave		₽ € ~	ს - в	o Q~ s	earch Shee	et	(!) v
н	ome Ins	sert Dra	aw Page	Layout	Formulas	>>	🖻 Sha	re 🖓 Co	omments
СІ	lipboard	A Font	Alignment	∽∕∕ Number	E Cond Form Cell S	itional Forma at as Table N Styles N	atting ∽	Cells	Editing
J2	*	\times \checkmark	f_X						•
	A	В	С	D	E	F	G	Н	I
1	Name	Туре	Start	Stop	Length	Depth	# Reads	RPKM	TPM
2	ENST000004	gene	1	1657	1657	0	8	0.96	1.26
3	ENST000004	gene	1658	2289	632	0	2	0.63	0.83
4	ENST000004	gene	2290	3640	1351	0	24	3.54	4.65
5	ENST000006	gene	3641	3708	68	0	0	0	0
6	ENST000004	gene	3709	4420	712	0	0	0	0
7	ENST000004	gene	4421	4955	535	0	0	0	0
8	ENST00006	gene	4956	5093	138	0	0	0	0
9	ENST000004	gene	5094	6280	1187	0	3	0.5	0.66
10	ENST00004	gene	6281	6870	590	0	10	3.37	4.44
11	ENST00006	gene	6871	7710	840	0	0	0	0
12	ENST000006	gene	7711	9124	1414	0	0	0	0
13	ENST000004	gene	9125	10063	939	0	0	0	0
14	ENST00006	gene	10064	12681	2618	0	0	0	0
15	ENST00003	gene	12682	13735	1054	0	0	0	0
16	ENST00004	gene	13736	16483	2748	0	13	0.94	1.24
17	ENST00004	gene	16484	16974	491	0	0	0	0
18	ENST00004	gene	16975	17603	629	0	17	5.38	7.08
19	ENST00006	gene	17604	18326	723	0	0	0	0
20	ENISTOOOOOA	aono	10007	10557	225	0	0	0	0
	S	neeti	+						
	Ready] 🖽 -		+	100%

It is trivial to sort the data in any column;

Click on the *TPM* header cell then select the **Data | Auto Filter** menu item

The headers should each now have a button at the right side;

11		*	×	~	f_X	TF	PM									•
	A		В		С		D		E		F		G		Н	I.
1	Name		Туре	-	Start	▼	Stop		Length	-	Depth	▼	# Reads	▼	RPKM 🔻	TPM 💌
2	ENSTOOD	0004	gene			1	1	657	16	557		0		8	0.96	1.26
3	ENSTOOD	0004	gene		1	658	2	289	e	532		0		2	0.63	0.83
4	ENSTOOD	0004	gene		2	290	3	640	13	851		0		24	3.54	4.65
5	ENSTOOD	0006	gene		3	641	3	708		68		0		0	0	0
6	ENICTOOD	1004	7000		Э.	700	4	120	-	717		^		0	0	0

Click on the button next to the *TPM* header and select **Descending** in the resulting dialog.

💿 🔵 🔵 AutoSave 🗨 📭 🏫 🗖	● ● AutoSave ● OFF 🏠 🕁 🤟 = Book4 Q~ Search Sheet 🙂 ~												
Home Insert Draw Page La	yout Fo	rmulas	Data Re	eview V	iew	2	Share	Comments					
Paste & Aignment	O∕∕ ► Number	E Con Forr Cell	ditional Form nat as Table Styles v	atting v	Cells	C v Editing	Ideas	Sensitivity					
$11 \stackrel{\bullet}{\checkmark} \times \checkmark \int_{\Sigma} \text{TPM}$													
А	В	С	D	E	F	G	Н	1					
1 Name	Type 🔻	Start 🔻	Stop 💌	Length 🔻	Depth 💌	# Reads 💌	RPKM 🔻	TPM ++					
2 ENST00000631211.1 ENSG00000280	gene	300054534	300055456	923	209	59904	12914.81	16997.79					
3 ENST00000625598.1 ENSG00000280	gene	300065104	300066026	923	212	59904	12914.81	16997.79					
4 ENST00000627981.1 ENSG00000281	gene	300067716	300068638	923	209	59904	12914.81	16997.79					
5 ENST00000629969.1 ENSG00000281	gene	300057148	300058070	923	172	59858	12904.89	16984.74					
6 ENST00000490232.3 ENSG00000274	gene	215525009	215525308	300	188	6435	4268.36	5617.79					
7 ENST00000618786.1 ENSG00000276	gene	215443962	215444260	299	184	6404	4262.01	5609.43					
8 ENST00000620465.4 ENSG00000251	gene	179214480	179214812	333	18	7097	4240.96	5581.73					
9 ENST00000612781.1 ENSG00000251	gene	179214813	179215046	234	0	4699	3995.98	5259.3					
10 ENST00000610674.1 ENSG00000278	gene	215522697	215522995	299	5	5979	3979.16	5237.16					
11 ENST0000600213.3 ENSG00000269	gene	64655675	64656723	1049	3	20235	3838.5	5052.03					
12 ENST00000581458.2 ENSG00000265	gene	146149789	146150109	321	85	6178	3829.81	5040.59					
13 ENST00000584058.2 ENSG00000263	gene	56969414	56969708	295	97	5655	3814.56	5020.52					
14 ENST00000613376.1 ENSG00000251	gene	179215772	179215903	132	24	2294	3458.23	4551.53					
15 ENST00000445125.2 ENSG00000225	gene	322801815	322803662	1848	86	30243	3256.54	4286.09					
16 ENST00000389680.2 ENSG00000211	gene	323624440	323625393	954	222	15513	3235.8	4258.79					
17 ENST00000618132.1 ENSG00000251	gene	179215047	179215771	725	142	11757	3226.95	4247.14					
18 ENST00000387347.2 ENSG00000210	gene	323625463	323627021	1559	206	23819	3040.26	4001.43					
19 ENST00000536684.2 ENSG00000255	gene	172331153	172332455	1303	2	19648	3000.6	3949.23					
20 ENST00000361851.1 ENSG00000228	gene	323632079	323632285	207	248	3004	2887.78	3800.74					
Sheet1 +				m	a u	1		1 00%					

The list is sorted, and the most highly expressed genes are displayed at the top.

You can always get back to the original order by filtering Ascending on the Start header.

You can use this approach to compare results between different data sets. For example, you could paste results from a second data set into a second sheet, then copy the *TPM* column from that and paste next to the *TPM* column from the first sample. Then you could create a simple "*Delta*" column with the starting formula of (e.g.) "=I2–J2", copied to all cells in the column. That would display the differences between the two sets of data. Then you could sort that column by **Descending** to identify those transcripts that had the highest drop off in expression from sample "I" to sample "J" and by **Ascending** to identify those that had the greatest increase in expression in sample "J". In reality, you would probably want to use more sophisticated formulas to use a ratio of expression levels in the *Delta* column, but this gives a general concept of how to proceed.

Identifying Transcripts

Once you have identified transcripts of interest, it would be nice to find out what they actually encode. By far the easiest way is to use a web browser and use the *Ensembl* genome browser.

First, carefully copy the text up to the first "|" in the top hit. In the case of this data it is accession number ENST00000631211.1. Open a browser and go to <u>https://ensembl.org</u>. In the top right corner is a *Search all species* edit box.

This immediately finds the appropriate references to the transcript. You can then click on the links to explore the transcript in more detail. If you'd like to download the region around the transcript location for more analysis in MacVector, here's how to do it;

Click on the top link that indicates "(Human Transcript)"

RNA-Seq Human Transcriptome Tutorial

BLAST/BLAT VEP Tools More ▼ 🔄 • Search all species Q Human (GRCh38.p12) ▼								
Location: 21:8,210,384-8,211,306 Gene: FP671120.4 Transcript: FP671120.4-201								
Transcript: FP671120.4-201 ENST00000631211.1 → Sequence								
- Exons - cDNA	Description			novel transcript, similar to YY1 associated myogenesis RNA 1 YAM1				
Protein Information Protein summary	Location			Chromosome 21: 8,210,384-8,211,306 reverse strand.				
 Domains & features Variants 2D Protein model 	About this transcript			This transcript has 1 exon , is associated with 1 variant allele and maps to 112 oligo probes .				
Genetic Variation Variant table Variant image Haplotrage	Gene			This transcript is a product of gene <u>ENSG00000280800</u> Hide transcript table				
 Population comparison Comparison image 	Show/hide columns (1 hidden)							
External References General identifiers Oligo probes	Name FP671120.4-201	Transcript ID ENST00006312	¢ 211.1	bp 🔶 923	Protein 🖕 No protein	Biotype 🍦	CCDS 🖕	RefSec
Supporting evidence UD History Transcript history Distance	Summary @)						

You will end up on a page with tabs for *Location*, *Gene* and *Transcript*.

Click on the Location	<i>i</i> tab				
Location: 21:8,210,384-8,211,306	Gene: FP671120.4	Franscript: FP671120	0.4-201		
Location-based displays - Whole genome - Chromosome summary - Boging supprism	Chromosome	21: 8,210,384	-8,211,30	06	
Region in detail	🌣 < 🖃 🗞				
Comparative Genomics Synteny Alignments (image) Alignments (text)	Assembly exceptions Chr. 21 Assembly exceptions	p13 p11.2	q21.1	q21.3 q22.3	
Region Comparison Genetic Variation Variant table Resequencing Listers	Region in detail @				
– Linkage Data – Markers	🌣 < 🖽 🖻 🗞 :	2 ?	<		
□ Other genome browsers			1.00	Mb Forward strand	
- UCSC 🗗	Chromosome bands		5.00 MD	0.50 MD	
는 NCBI교 Ensembl GRCh37교	Contigs Genes (Comprehensive set			CR381572.5 >	
Configure this page	from GENCODE 27)	CONTRACTION			
1 Custom tracks		F00019 < RF00614 < SMIM34B		RF00002 FP236383.5 > FP671120.8 > FP236383.8 > EBE71120.8 > FP236383.8 >	
🛃 Export data		P236241.1		MIR3648-1 > < FP236383.3	
 Share this page 		< FAM243B		MIR6724-2> RF01518> MIR6724-1> FP236383.6> FP671120.1> < FP236383.2 < FP671120.5 RN45-85N1>	
F Bookmark this page			< FP671	FP671120.9 > FP236383.4 > 20.3 MIR6724.3 > DNAE.8CM2 EP232383.10	

This shows the genes and annotations in the region around the transcript. There are a lot of customization options in the browser which you can explore.

To export the data in a format MacVector can use, click on the **Export Data** button.

Export data	
Export Configuration - Feature List	
Location to export:	chromosome:GRCh38:21:8210384:8211306:1
Output:	GenBank
Select location:	21 * 8210384 * 8211306 * 1 🗘
5' Flanking sequence (upstream):	2000 * Maximum of
3' Flanking sequence (downstream):	2000 • (Plaximum of 1000000)
	Next >
Fields marked * are required	
Options for GenBank	c i Presidente de la companya de la comp
Select/deselect all:	0
Similarity features:	٥
Repeat features:	٥
Prediction features (genscan):	٥
Contig Information:	•
Variation features	

Make sure you select **GenBank** as the output. Optionally add additional residues on each side of the location for context. Above we asked for an extra 2kb on each side. Click on the **Next** button.

A configuration window appears;

Export Configuration - Output Format

Please choose the output format for your export

- <u>HTML</u>ଟ୍ୟ
- <u>Text</u> &
- Compressed text (.gz)

Click on the **Text** link.

This displays the sequence in GenBank text format;

ranny or		~					
Chromosome	21: 8,210,384-8,211,306 - Region in detail - Homo https://useast.ensembl.org/Homo_sapiens/Export/Output/L	+					
LOCUS DEFINITION	21 4923 bp DNA HTG 27-JUN-2019 Homo sapiens chromosome 21 GRCh38 partial sequence 82083848213306 reannotated via EnsEMBL						
ACCESSION	chromosome:GRCh38:21:8208384:8213306:1						
VERSION	chromosome:GRCh38:21:8208384:8213306:1						
KEYWORDS							
SOURCE	human						
ORGANISM	Homo sapiens						
	Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria;						
	Deuterostomia; Chordata; Craniata; Vertebrata; Gnathostomata;						
	Teleostomi; Euteleostomi; Sarcopterygii; Dipnotetrapodomorpha;						
	Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Boreoeutheria;						
	Euarchontoglires; Primates; Haplorrhini; Simiiformes; Catarrhini;						
	Hominoidea; Hominidae.						
COMMENT	This sequence was annotated by Ensembl(www.ensembl.org). Please visit the Ensembl						
	or EnsemblGenomes web site, http://www.ensembl.org/ or						
	http://www.ensemblgenomes.org/ for more information.						
COMMENT	All feature locations are relative to the first (5') base of the sequence in this						
	file. The sequence presented is always the forward strand of the assembly.						

Its easy to get this into MacVector;

Either (a) carefully select from just before the LOCUS text at the top to just after the trailing // characters at the bottom of the window or (b) choose Edit | Select All. Choose Edit | Copy. Switch to MacVector. Select File | New From Clipboard.

You may get a warning about invalid features in the data – Ensembl does not always adhere particularly closely to the GenBank standard. Any features that cannot be parsed will be saved in the *COMMENT* section of the **Annotations** tab.

Modifying Bowtie Parameters

While the above example tutorial does use a full-length Human Transcriptome sequence, it only uses a total of 2 million reads to speed things up for tutorial purposes. In addition, we use a *Bowtie* setting of **Report Best Hit only**. That means that if more than one transcript matches a particular read, only one will be reported as a match. In general, it is considered better to allow *Bowtie* to match multiple transcripts, though there are many scenarios where the single hit might be preferable. Let's look at the *Bowtie* dialog again;

Bowtie Options	Read pre-processing				
Preset: Very Sensitive \$ Type of Alignment: Local No gaps within first bases of read: 4 Number of Threads: 8	 Discard reads less than Trim ends with quality less than Trim N's from ends Discard short reads that contain any N's 				
 Use paired-end alignments Minimum insert size: Maximum insert size: 500 Orientation: Forward - Reverse 	Hit Reporting Report Best Hit only Number of hits to report: Report all alignments 				
Generate child contigs Check this box if you are using the Reference as a scaffold to assemble related reads, or if you want to 'drill down" into individual alignments. For other tasks (e.g. SNP analysis or RNA-Seq expression analysis) leave this unchecked. Check the state of					

The **Preset** settings look as if they would make a significant difference to the speed of the alignment, but, in our hands, the differences are minimal. In general, there is less than a 10% difference in computation speed between *Very Fast* and *Very Sensitive*. However, *Very Sensitive* does tend to align more reads.

If you are using paired-end alignments and your insert size is significantly different than the defaults, you may want to change those settings.

The **Read pre-processing** section can generally be left unchecked. If you think you have a lot of failed reads, this might help clean up the data, but in general *Bowtie* will simply ignore bad reads.

The Hit Reporting section is the most critical for these types of alignments. Our example used Report Best Hit only and this does generate valid results. However, if you want reads to map to multiple transcripts, you need to choose one of the other options. The most obvious solution is to check Report all alignments. However, in our experience, with the Human Transcriptome, this has a huge effect on alignment time. With the sample data set, Report Best Hit only takes from 20 to 30 minutes to complete, no matter which Preset is used. But Report all alignments takes 6 to 7 hours and uses a maximum of ~14 MB RAM rather than the 4-6 MB RAM used with the other analyses. The upside of this is that many transcripts get many more reads aligned to them.

One alternative approach is to use the **Number of hits to report** option. This option limits the *Bowtie* search to give up after X number of hits are found. It turns out you can set this to a fairly high number and it still completes much faster than the **Report All Alignments** option. Let's look at a table with some timings;

RNA-Seq Human Transcriptome Tutorial

		Time	Aligned Reads	Unaligned Reads
Best Hit Only	Very Sensitive	20:13	1199781	878786
Best Hit Only	Very Fast	21:53	1129472	928548
Number of hits = 4	Very Fast	28:22	3445495	923040
Number of hits = 8	Very Fast	22:47	5012563	922056
Number of hits = 12	Very Fast	21:32	5965105	921692
Number of Hits = 12	Very Sensitive	29:44	6784849	872834
Number of hits = 50	Very Sensitive	44:32	12992388	871288
Number of hits = 50	Very Fast	44:15	9961427	921034
All Alignments	Very Fast	6:26:36	79237491	920712

Here we can see that using the **All Alignments** option is around 20x slower than most of the other options. However, it does generate many more alignments (more than 8x as many as the equivalent 50 hits option), though it may be that many of these are spurious alignments rather than close-to-perfect matches. Similarly, using the **Very Sensitive** option leaves fewer unaligned reads, but, again, these may be imperfect matches.

Overall, the optimum parameters may depend on the actual questions you are asking of the data. As a trade-off between computational time, noise from spurious alignments and sensitivity, a good place to start would be **Number of hits = 12** with the **Very Sensitive** option.