MacVector 17

for Mac OS X

RNASeq Gene Expression Analysis Tutorial

Mailector Inc

Software for Scientists

Copyright statement

Copyright MacVector, Inc, 2019. All rights reserved.

This document contains proprietary information of **MacVector**, **Inc** and its licensors. It is their exclusive property. It may not be reproduced or transmitted, in whole or in part, without written agreement from **MacVector**, **Inc**.

The software described in this document is furnished under a license agreement, a copy of which is packaged with the software. The software may not be used or copied except as provided in the license agreement.

MacVector, Inc reserves the right to make changes, without notice, both to this publication and to the product it describes. Information concerning products not manufactured or distributed by **MacVector, Inc** is provided without warranty or representation of any kind, and **MacVector, Inc** will not be liable for any damages.

This version of the RNASeq Analysis tutorial was published in January 2019.

Contents

CONTENTS	3
INTRODUCTION	4
SAMPLE FILES	4
TUTORIAL	4
Create and Populate an Assembly Project	4
Run a Bowtie Assembly	6
Analyzing the Bowtie Results	8
Exporting Data to Excel	12

Introduction

One common use of Next Generation Sequencing (NGS) technology is to analyze the relative expression levels of all known genes of an organism in a single experiment. mRNA is extracted from the organism and randomly sequenced using NGS to generate millions of reads. These can then be aligned against a sequenced genome to determine how many reads align to each known gene, resulting in data that can be used to estimate the relative expression levels of each gene.

MacVector incorporates the popular Bowtie algorithm which is a blazingly fast assembler than can align millions of reads to a reference genome in just a few minutes with minimal memory requirements. This tutorial shows you how to perform one of these analyses with sample data that is installed along with MacVector.

Sample Files

You can find the data files for this tutorial in the following location;

/Applications/MacVector/Tutorial Files/Contig
Assembly/RNASeq/

The data can also be downloaded from;

https://macvector.com/downloads.html

Tutorial

Create and Populate an Assembly Project

You must have the *Assembler* module enabled for this tutorial. You can check if you have an active *Assembler* license by choosing **MacVector I About MacVector**. You should see a "splash screen" something like this;

If the logo simply reads "*MacVector*" and not "*MacVector* with *Assembler*" then you do not have a current license to run *Assembler* and you should contact us at <u>support@macvector.com</u> to obtain a temporary license.

Select File I New I Assembly Project to create an empty Assembly Project document. Click on the Add Ref toolbar button, navigate to the /Applications/MacVector/Tutorial Files/Contig Assembly/RNASeq/folder and choose Campylobacter jejuni IA 3902. Then click on the Add Reads toolbar button and choose the file RNASeq.fastq.gz from the same folder.

Your project should look like this;

Note that the Status column indicates the type of data contained in each imported file with *REF* indicating a reference sequence. By default, imported fastq files are assign as *Illumina* files (MacVector will also automatically identify and flag paired-end read files). If your data comes from a different source (IonTorrent, PacBio, Oxford Nanopore etc) you can simply double-click on the row to change the data source.

Also note that MacVector can directly read gzipped files (these typically have a .gz extension). There is no need to unzip the files prior to analysis. This can save a lot of disk space with large data sets.

Double-click on the *Campylobacter jejuni* item to open up a sequence document window. Switch to the Features tab.

		Campy	lobacter_jeju	ini_IA39	02 — Fea	tures	
₹ ≎ DNA L	ocked Text V	iew Prefs Repli] 🗸 🔨 ca Topology	· · ·	Edit Delet		Q Description Filter
Editor	•	Мар	Features	Anno	tations		
Туре	Start	∧ Stop	C Descr	iption			
				_table=11 ation=MC		IKVLKGLE	AVRKRPGMYIGDTNIG
gene	2579	4888	/gene: /locus	=gyrB _tag=CJS	A_0003		
CDS	4916	5257	/produ /prote /trans	_tag=CJS ict=putati in_id=AD0 _table=11	ive peripla: C27659.1	·	in NLEINPDTGLIIDPDSPLV
gene	4916	5257	C /locus	_tag=CJS	A_0004		
CDS	5260	6498	/produ /prote /trans	_tag=CJS ict=molyb in_id=AD0 _table=11	odopterin c 227660.1		tase family protein
gene	5260	6498	C /locus	_tag=CJS	A_0005		
CDS	6709	8010	/locus /produ /prote /trans	in_id=AD0 _table=11	H+ antiport C27661.1		protein ELFRFNVLLSLLISALVAG
gene	6709	8010	/locus	_tag=CJS	A_0006		
CDS	8144	12634	/gene /locus	_tag=CJS		ase (NADF	PH) large subunit

Note how the reference sequence is annotated with **CDS** and **gene** features. This will be important later when we need to calculate the number of RNASeq reads that align to each feature.

Run a Bowtie Assembly

Close the sequence window and return to the Assembly Project. Select both items in the list (hold down the <shift> key to select the second item), then click the Bowtie toolbar button.

Bowtie Options	Read pre-processing
Preset:SensitiveType of Alignment:LocalNo gaps within first bases of read:4Number of Threads:4 Threads	 Discard reads less than Trim ends with quality less than Trim N's from ends Discard short reads that contain any N's
Use paired-end alignments Minimum insert size: Maximum insert size: 400 Orientation: Forward - Reverse	Generate child contigs Check this box if you are using the Reference as a scaffold to assemble related reads, or if you want to 'drill down" into individual alignments. For other tasks (e.g. SNP analysis or RNA-Seq expression analysis) leave this unchecked.
	Defaults Cancel OK

This is where you can change the parameters for the Bowtie analysis. Typically, the defaults settings work just fine. In this case, our reads are not paired-end, but if you do have paired-end reads, make sure the appropriate checkbox is selected.

Click on the OK button to start the Bowtie alignment.

During the analysis, a job progress sheet will open;

Status: Running Running Bowtie indexing and analysis (step 4	of 12)
Elapsed time: 11s	
You can close this dialog and track progress using the Job Manager (see the Windows menu).	Close Stop

The job should complete in less than a minute on a reasonably modern machine.

Click on the View button to close the dialog and show the results.

The Bowtie results are encapsulated in a named job item in the project. If you click on the disclosure item to the left of the job name you will see (a) a "Reference Contig" that you can click on to open up the alignment in the *Contig Editor* and (b) any reads that do not align are collected into an Unaligned_Reads file. While these are typically failed or contaminant reads, there may be times when these are the reads you want e.g. if your reference contained just rRNA and tRNA genes are you wanted to generate a fastq file enriched in mRNA.

0		Seqs	Add Ref	Add Contig	Remove	0 ₄	0	d — Pro	• ©_	Cro	SSMatch	Phra		≀~ Nam	e Filter	>>	>
	Project		Proper	ties	Coverag	je											
N	lame					∽ St	atus		Length		#		ClipL		ClipR	Sta	irt
the second	Campylob	pacte	r_jejuni_l	A3902		RE	F		1635	045				1	1635	5045	
	RNASeq.f	fastq.	gz			llu	mina Ur	npaired		100	200	000					
	Bowtie 1	- 14:5	58 - Jan 1	16, 2019													
	Unalig	ned_l	Reads_1.f	q.gz		llu	mina Ur	npaired		100	2	367					
I E,	Campy	yloba	cter_jeju	ni_IA3902 C	ontig 1				1635	046	197	633					

Analyzing the Bowtie Results

Double-click on the **Contig 1** item to open the *Reference Contig* document window. Switch to the Editor tab if necessary.

By default, the consensus is shown in the middle of the window. If you want to see the consensus at the top, immediately underneath the reference sequence (as shown above), click on the Prefs toolbar button.

The reads are shown aligned to the reference. You can scroll through the entire assembly (1.6 Mbp and \sim 198,000 reads) if you wish.

Select the Map tab.

		qs Digest 10				<u> </u>	Range
Editor	Мар	Features	Annotation		Coverage	SNPs	VCF
			Campylol	bacter_jejuni_IA390	2		
))))))		I ANG IN FINIS IN I				
			ologia di Cali di A				
9940	0 198800 298200	397600 497000	596400 695800	795200 894600 994	1000 1093400 1192800	1292200 1391600 1	1491000 1590400
	A THE AN ADDR AN AND			I I BUD MUNICIPAL ALIAN IN	A THE MET DIMENSION IN COMP	III WINA NA mampa la manakan	A MANANA I I I I I I MANANA I I I I I I I I I I I I I I I I I
	I I H II IIX OL IKK				A THE REPORT OF THE TRANSPORT		
IPs	N THE OF THE REAL PROPERTY OF				a 186 mai d'Anni I II II Anni	III YA KU KU KUKAPAN MANYA	
ELs		<u> </u>					
000 000							
000		1 1					
000							
000							
000							
000							
000				L.			
0							

This shows a map of the entire genome, along with coverage information for the reads. You can see there are several spikes of high coverage. Lets zoom into the circled area.

Carefully click to the left of the circled area, hold down the mouse button, drag to the right of the area and let go.

If you repeatedly drag, eventually you will see that there is a peak of coverage immediately under a single green **gene** feature;

Let the mouse pointer hover over the green arrow representing the gene. The annotations for the **gene** are displayed in a tooltip.

In this case, the annotation is not too informative, as there is simply a cryptic /locus_tag qualifier with the value "CJSA_Cj5SB". However, it is simple to run an internet BLAST search to find out more information;

Click on the green Feature arrow so select it, then choose the **Database I Online Search for Similar Sequences (BLAST)** menu item. Set up the dialog as shown below.

Note that MacVector remembers the region you selected when you clicked on the green arrow,

NCBI Website	e and Data Usage Policies and Disclaimers		
Program: blastn 🗘 BLAST Parameters	Region: from 404273 to 404392	D	
Database: nr Perform gapped alignme 	Expect: 10		
More Choices	Defaults Cancel OK	(
	-	ing	
BLAST Description List S BLAST Aligned Sequen	Ce SLASI Map	1	
BLAST Parameters Database: nr Perform gapped alignment More Choices Defaults Cancel OK Click OK, wait for the job to complete, then click OK in the resulting sheet. Switch to the BLAST Map results tab. Click OK, wait for the job to complete, then click OK in the resulting sheet. Switch to the BLAST Map results tab. Click OK and the transplotecter jejuni [A3902 Contig 1 - Results BLAST Description List BLAST Aligned Sequence BLAST Map Criede 0130 Criede 013 Criede 0130 Criede			
2	55 ribosomal RNA		
		· · · · · · · · · · · · · · · · · · ·	
		0 e-value 4.1	
2	blastn Region: from 404273 to 404392 rameters se: nr por gapped alignment hoices Defaults Cancel OK wait for the job to complete, then click OK in the resulting tch to the BLAST Map results tab. Cancel Campylobacter.jejuni_IA3902 Contig 1 - Results Litt BLAST Aligned Sequence BLAST Map CHARG 0130 Results Chard 0130 CHARG 0130		
ent 2 from 590488 to 590369 of Campylobacter jejuni str	blastn Region: rameters ase: nr c Expect: 10 c form gapped alignment choices Defaults Cancel OK okait for the job to complete, then click OK in the resulting itch to the BLAST Map results tab. Campylobacter_jejuni_IA3902 Contig 1 - Results n List © BLAST Aligned Sequence BLAST Map Campylobacter_jejuni_IA3902 Contig 1 - Results to 22220 of Campylobacter_jejuni strain FDAAROS_422 chromosome, complete genome [gil126932355[gb](PD23827.1]] scre 240 e-value 4 to 500380 of Campylobacter jejuni strain FDAAROS_422 chromosome, complete genome [gil126932355[gb](PD23827.1]] scre 240 e-value 4 to 500380 of Campylobacter jejuni strain FDAAROS_422 chromosome, complete genome [gil126932355[gb](PD23827.1]] scre 240 e-value 4 to 2003	0 e-value 4.1	
	oo hoodana hart		

The BLAST Map displays a graphical representation of the region around the primary alignment. You can see the gene we selected at the top and the *High-scoring Segment Pairs* of the matching database sequences aligned underneath, complete with annotations on the matching region along with ~2kb on either side. It is immediately apparent that the gene aligns to 5s rRNA genes, exactly the sort of gene we would expect to express high levels of RNA in the experiment.

Close the BLAST results window and switch to the Summary tab of the reference contig window.

Looked Freis In	opilou Doto			-
Editor	Мар	Features	Annotations	Summary
ummary report f	or Campylobacte	r_jejuni_IA3902	Contig 1	
otal residues r ongest consensu	ts: 3025 covered by reads tot covered by r s segment: 9787 f consensus seg	eads: 566017		
umber of unique umber of unalig otal number of verage read ler verage coverage verage quality	gth: 100	nsus: 14	< 40): 1635047	
egions with no -3 (3) 37-183 (47) 35-336 (2) 11-729 (219) 47-1054 (208) 155-1230 (76) 331-1480 (150) 565-1569 (5) 670-1690 (21) 034-2326 (293) 884-4932 (49) 033-5087 (55)	coverage:			

This tab summarizes the results of the Bowtie assembly. Because the data is RNASeq, the entire genome does not have coverage, as you would expect. In fact, there were 3,025 separate aligned segments, representing just over 1 million of the 1.6 million bases in the genome,

Switch to the Cove	erage tal	b.							
	Campy	lobacter_jejun	i_IA390	02 Contig	1 — Cover	age			
🛆 🖂 ACGT									
ACGI									
Locked Prefs Replica Dots									
Editor Map	Features	Annotations	Su	mmary	Coverage		SNPs	VCF	
			Ju	initial y	Coverage		SIN 3	101	
Coverage report for Campylobacto	er_jejuni_iA5	and contrig I							- 11
Average coverage depth in select	t features:								
Name	Type	Start	Stop	Length	Depth #	Reads	RPKM	TPM	
dnaA	CDS	1	1323	1323	0	13	74.85	62.44	
dnaN	CDS	1483	2550	1068	1	23	164.04	136.84	
gyrB	CDS	2579	4888	2310	7	188	619.92	517.14	
putative periplasmic protein	CDS	4916	5257	342	1	8	178.18	148.64	
molybdopterin oxidoreductase f	CDS	5260	6498	1239	1	24	147.55	123.08	
Na+/H+ antiporter family prote	CDS	6709	8010	1302	Θ	10	58.50	48.80	
gltB	CDS	8144	12634	4491	3	143	242.54	202.33	
conserved hypothetical protein	CDS	12644	14395	1752	0	16	69.56	58.03	
gltD	CDS	14398	15843	1446	4	63	331.87	276.84	
rnhB	CDS	15844	16419	576	7	46	608.31	507.46	
comEA	CDS	16452	16691	240	25	64	2031.24	1694.46	
rbr	CDS CDS	16756	17403	648	54	366	4302.27	3588.96	
ilvD	CDS	17563 19251	19239	1677 525	5	89 26	404.25 377.23	337.23	
putative integral membrane pro	CDS	19251	19775 21093	1227	4	26	148.99	314.69 124.29	
conserved hypothetical protein ExsB	CDS	21170	21844	675	3	24	259.55	216.51	
dsbI	CDS	21865	23391	1527	4	69	344.19	287.13	
dba	CDS	23403	23570	168	3	8	362.72	302.58	
methyl-accepting chemotaxis pr	CDS	23676	25454	1779	4	83	355.38	296.46	
ccpA-1	CDS	25444	26358	915	16	159	1323.63	1104.18	
fumarylacetoacetate hydrolase	CDS	26422	27300	879	2	27	233.97	195.18	
RNA pseudouridylate synthase f	CDS	27413	28258	846	õ	0	0.00	0.00	
purB	CDS	28393	29721	1329	3	45	257.92	215.15	
nrdA	CDS	29737	32106	2370	4	129	414.60	345.86	
sodium/dicarboxylate symporter	CDS	32145	33530	1386	10	149	818.87	683.10	
thyX	CDS	33650	34273	624	2	17	207.52	173.11	
pyrG	CDS	34393	36024	1632	4	71	331.38	276.44	
recJ	CDS	36011	37582	1572	1	32	155.06	129.35	
ansA	CDS	37678	38673	996	1	12	91.77	76.56	
hypothetical protein	CDS	44967	45494	528	Θ	2	28.85	24.07	
hypothetical protein	CDS	45484	46170	687	Θ	Θ	0.00	0.00	
type II restriction-modificati	CDS	46231	50004	3774	0	11	22.20	18.52	
putative cytoplasmic protein	CDS	50001	52127	2127	0	2	7.16	5.97	
putative periplasmic protein	CDS	52202	52903	702	7	53	575.08	479.74	
MFS family drug resistance tra	CDS	52900	54102	1203	1	14	88.64	73.95	

٦

This is by far the most useful tab for RNASeq expression analysis. There are a number of columns;

Name: this is the preferred name of the feature. For **CDS** features it is typically the contents of the /gene qualifier, but MacVector will use other qualifiers if /gene is not present.

Type: the type of feature. By default MacVector only displays **CDS** and **gene** features but other feature types can be requested.

Start: the start location of the feature.

Stop: the stop location of the feature.

Length: the length of the feature.

Depth: the average depth of coverage across the entire length of the feature (rounded down).

Reads: the total number of reads that aligned to the feature.

RPKM: Reads Per Kilobase of transcript per Million mapped reads. This is a common calculation used to normalize the data to facilitate comparison of expression levels between genes. It is calculated as follows;

- Count up the total reads in a sample and divide that number by 1,000,000 this is our "per million" scaling factor.
- Divide the read counts by the "per million" scaling factor. This normalizes for sequencing depth, giving you reads per million (RPM)
- Divide the RPM values by the length of the gene, in kilobases. This gives you RPKM.

TPM: Transcripts Per Kilobase Million. This is a variation on RPKM that is calculated slightly differently;

- Divide the read counts by the length of each gene in kilobases. This gives you reads per kilobase (RPK).
- Count up all the RPK values in a sample and divide this number by 1,000,000. This is your "per million" scaling factor.
- Divide the RPK values by the "per million" scaling factor. This gives you TPM.

The advantage of using TPM is that this normalizes the data between different experiments so that you can directly compare the values for the same gene between different runs.

Exporting Data to Excel

The data in the Coverage tab is formatted to simplify exporting the columns into Microsoft Excel for further analysis. Specifically, the

columns are tab-separated so that when you copy and paste into Excel, each value gets pasted into a separate cell.

Carefully select the text starting at the **Name** column header. Hold down the <shift> key and scroll to the bottom of the window. Still holding down <shift>, click just after the last character of the bottom line, so that the entire table gets selected. Choose **Edit I Copy**

This copies the entire text table to the clipboard. Now we can switch to Microsoft Excel and paste the data into a new workbook.

Open Microsoft Excel and (if necessary) create a new blank workbook. Select the top-left cell. Choose **Edit I Paste Special...**

Older versions of Microsoft Excel (e.g. Office 2008) would correctly paste the tab-separated values directly, but Excel 2016 and later do not paste correctly, requiring you to go through this workaround;

	Paste Spe	ecial
Source: Paste: Paste link:		
As:		
Text		
Result	Inserts the contents of the Clipboard as a Text format.	Display as icon
		Cancel OK

Even though "Text" is the only possible option, you must go through this dialog to get the required behavior.

Click OK

The data gets pasted into the workbook, with each data point in a separate cell;

F		▼ 12 ▼	mulas Da	ata Rev	iew Vie % Number	E Conc	ditional Format nat as Table * Styles *		L+ Shai	re ^
7	A	В	с	D	E	F	G	н	1	
L	Name	Туре	Start	Stop	Length	Depth	# Reads	RPKM	TPM	
	dnaA	CDS	1	1323	1323	0		74.85	62.44	
	dnaN	CDS	1483	2550	1068	1		164.04	136.84	
	gyrB	CDS	2579	4888	2310	- 7		619.92	517.14	
	putative periplasmic protein	CDS	4916	5257	342	1		178.18	148.64	
	molybdopterin oxidoreductase f	CDS	5260	6498	1239	1	24	147.55	123.08	
	Na+/H+ antiporter family prote	CDS	6709	8010	1302	0	10	58.5	48.8	
	gltB	CDS	8144	12634	4491	3	143	242.54	202.33	
	conserved hypothetical protein	CDS	12644	14395	1752	0	16	69.56	58.03	
)	gltD	CDS	14398	15843	1446	4	63	331.87	276.84	
1	rnhB	CDS	15844	16419	576	7	46	608.31	507.46	
2	comEA	CDS	16452	16691	240	25	64	2031.24	1694.46	
3	rbr	CDS	16756	17403	648	54	366	4302.27	3588.96	
4	ilvD	CDS	17563	19239	1677	5	89	404.25	337.23	
5	putative integral membrane pro	CDS	19251	19775	525	4	26	377.23	314.69	
5	conserved hypothetical protein	CDS	19867	21093	1227	1	24	148.99	124.29	
7	ExsB	CDS	21170	21844	675	3	23	259.55	216.51	
B	dsbl	CDS	21865	23391	1527	4	69	344.19	287.13	
9	dba	CDS	23403	23570	168	3	8	362.72	302.58	
)	methyl-accepting chemotaxis pr	CDS	23676	25454	1779	4	83	355.38	296.46	
1	ccpA-1	CDS	25444	26358	915	16	159	1323.63	1104.18	
2	fumarylacetoacetate hydrolase	CDS	26422	27300	879	2		233.97	195.18	
3	RNA pseudouridylate synthase f	CDS	27413	28258	846	0	-	0	0	
4	purB	CDS	28393	29721	1329	3		257.92	215.15	
5	nrdA	CDS	29737	32106	2370	4	129	414.6	345.86	
6	sodium/dicarhoxvlate symnorter	CDS	32145	33530	1386	10	149	Ջ1Ջ Ջ7	683 1	
•	Ready								+ 1	00%

Now you can repeat this procedure with multiple datasets representing time-points, drug treatments, different growth conditions etc., and use the built-in functions of Excel for advanced analysis and comparison between runs.