MacVector 17.5

for Mac OS X

Virtual Gene Cloning from NGS RNA-Seq Data

in here

Software for Scientists

Copyright statement

Copyright MacVector, Inc, 2020. All rights reserved.

This document contains proprietary information of **MacVector**, **Inc** and its licensors. It is their exclusive property. It may not be reproduced or transmitted, in whole or in part, without written agreement from **MacVector**, **Inc**.

The software described in this document is furnished under a license agreement, a copy of which is packaged with the software. The software may not be used or copied except as provided in the license agreement.

MacVector, Inc reserves the right to make changes, without notice, both to this publication and to the product it describes. Information concerning products not manufactured or distributed by **MacVector, Inc** is provided without warranty or representation of any kind, and **MacVector, Inc** will not be liable for any damages.

This version of the Virtual Gene Cloning tutorial was published in June 2020.

Contents

COPYRIGHT STATEMENT	2
CONTENTS	3
	4
SAMPLE FILES	4
TUTORIAL	5
Find Reads that Encode QALGGH	5
Assembling Matching Reads	
Identification of Zn Finger Encoding Contigs	9
Annotating the Sequences	
Identifying Additional Zinc Finger Encoding Genes	
Analysis of Contig 34	16
Extending the Sequence of Contig 34	
Aligning Proteins to View Common Functional Domains	

Introduction

The NCBI Sequence Read Archive (SRA) database is a huge resource of Next Generation Sequencing experimental data. Many groups and laboratories deposit data here that they have generated for their own specific projects that can be datamined for other unrelated projects with a minimum of effort. In this tutorial, we will demonstrate how you can use MacVector to identify and assemble genes encoding zinc finger proteins from RNA-Seq data from a plant species.

For this tutorial we will "clone" zinc finger proteins of the C2H2 type from a particular plant, *Aloe vera*, that is commonly used in the cosmetic, pharmaceutical and food industries. C2H2 zinc finger proteins are important transcriptional regulators that, in plants, have a highly conserved sequence, QALGGH, located within a putative DNA-contacting surface of each finger.

Sample Files

The data for this tutorial is too large to be included with the MacVector software distribution so needs to be downloaded from the NCBI SRA website. The tutorial uses RNA-Seq data isolated from an *Aloe vera* root sample - https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR5161731. To download the data, first click on the **Reads** tab;

De novo assembly and trans	criptome sequencing of Ale	pe vera root sar	nple (SRR516	51731)
Metadata Analysis Reads Da	ta access			
Filter: Find F	iltered Download 🥝 What does it do?			
What can the filter be applied to?				
The Run is too big (>1.1G) for sear	china by sequence substring.			
	simig by coqueries cuber mig.			
< 1 1 5107807 >	View:	biological reads	technical reads	quali
1 0005101701 1 0001010750	Reads (separated)			
name: 1. member: CGATGT		iologiaal)		
2 SBB5161731 2 SBS1910758	GGGAAGTTGGAGATCGGTGTCCGG	CGAGGCGCTGGGCC1		aaaaaa
name: 2, member: CGATGT	AGGCCTGCGATTTTCGAGACGGAT	TATCTCTCATTAGGO	CTTCCGCCTCTGAG	GGCTCA
3. SRR5161731.3 SRS1910758	ATCATGAACTTTGC			
name: 3, member: CGATGT	>qnllSRAISRR5161731.1.2 1 (Bi	iological)		
4. SRR5161731.4 SRS1910758	GCAAAGTTCATGATTGAGCCCTCAG	GAGGCGGAAGCCCTAZ	TGAGAGATAAATCC	GTCTCG
name: 4, member: CGATGT	AAAATCGCAGNNCNCCTCCCCCTCC	CTCGTCCCTGAGGCCC	AGCGCCTCGCCCGG	ACACCG
5. SRR5161731.5 <u>SRS1910758</u>	ATCTCCAACTTCCC			
name: 5. memper: CGAIGI				

Download for Experiment SRX2479800

Select **FASTQ** format and click on the **Download** button. By default, the data will download as a compressed file called sra_data.fastq.gz. You may find that your computer automatically decompresses the file. This is not a problem; it just means that the file takes up more space on

your hard drive. The file contains paired-end reads in "interleaved" format where the reads are organized as Read1-left, Read1-right, Read2-left, Read2-right etc. This allows all of the data to be contained within a single file. More typically, you may receive data in a pair of files. MacVector can handle either type, with or without gzip compression.

Finally, move the file into a unique folder e.g. "Data"

Note that there is a companion "leaf" dataset (SRR5167034) that is incomplete. The "reverse" reads in that set are actually a duplication of the "forward" reads. The data is still usable, but it is now effectively unpaired data and the analysis is more tedious, though you can follow the steps in the tutorial and still get successful assemblies. This tutorial was first written using SRR5167034 data and so some of the example screenshots may still show that data set.

Tutorial

Find Reads that Encode QALGGH

The first step is to identify all RNA-Seq reads in the data set that potentially encode the conserved QALGGH domain. Choose File | New | Protein to create a new protein sequence window, then type "QALGGH" into the Editor. Then choose Database | Align to Folder;

Search Folder
Data Choose
 Search in enclosed folders (recursively) Folder contains paired-end reads
Options
Hash Value: 2 ᅌ Scores to Keep: 100000
Processing: Align 🗘
Scoring Matrix
http://pam250S.matrix.pmat
Open Choose
Align to DNA
Genetic Code: universal
Region
1 to 6
Defaults Cancel OK

There are two important changes we need to make. (a) make sure you set **Scores to Keep** to a large number (e.g. 100,000) as we need to save as many reads as we can. (b) Make sure you have checked the **Align to DNA** checkbox. We are starting with an amino acid sequence, but we want to find all the *DNA sequences* that potentially could encode that protein.

When you click **OK**, the search will start. There is a lot of data to process in the fasta file, and each read needs to be translated in all 6 reading frames before being aligned to our input sequence, so this will take some time. On an i7 MacBook Pro the search took 7 hours and 45 minutes.

When complete, select all three output options and click **OK**.

Summary	Filter Options
Residues: 5907896020 Entries: 58494020 Scan Time: 07:33:04.64	Entries to show: 1 to 100000
Processing Time: 00:01:12.53	Score Region: 1 to 6
Matches Saved: 100000 Matches Trimmed: 11494734 Lowest Score Retained: 22	Display Region: 1 to 6
Significant: 100000	Display Options
Possible: 100000 Matches Aligned: 100000	Description list Horizontal map
	Aligned sequences
	Defaults Cancel OK

With 100,000 hits to display, the result windows can take some time to generate their content. On a MacBook Pro it took 3 minutes for the results to appear.

The **Folder Aligned Sequence** tab displays the translation of each hit aligned against the query sequence. You can see that the first few entries are perfect matches;

		🚺 QALGGH.prot	— Results
imes Folder Horizontal Map	imes Folder Description List	imes Folder Aligned Sequence	
Alignment List			
Search Analysis for Sequ Matrix: pam250S matrix.; Search from 1 to 6 where Date: Apr 24, 2020 22:35:54	uence: QALGGH.prot omat e origin = 1	Score Region from 1 to Maximum possible score	o 6 e: 28
Database: Folder '/Users	s/kendall/Desktop/Aloe Ver	a/Data'	
(Select the text in one or Database Retrieve	or more rows and choose D to File to save them into	atabase Retrieve To Disk a single fasta or fastq fi	to open the matching sequences le)
QALGGH.prot	QALGGH		
1. SRR5167030002971.: [28] QALGGH.prot	L 70 QALGGH> QALGGH		
2. SRR5167030002971.2 [28] QALGGH.prot	2 70 QALGGH> QALGGH		
3. SRR5167030020106.: [28] • QALGGH.prot	L 40 :QALGGH QALGGH		
4. SRR5167030020106.2 [28] • QALGGH.prot	2 40 ©QALGGH QALGGH		
5. SRR5167030060655.1 [28] QALGGH.prot	140 QALGGH> QALGGH		
6. SRR5167030060655.2 [28] QALGGH.prot	240 QALGGH> QALGGH		

As you scroll down the list, eventually you start to see imperfect matches;

3181. SRR51670...71896.1 [26] < 10 <HPLGGH 111111 QALGGH.prot QALGGH 3182. SRR51670...71896.2 10 <hr/>HPLGGH [26] |||||| QALGGH QALGGH.prot 3183. SRR51670...82482.1 [26] QQLGGH> | |||| QALGGH QALGGH.prot 3184. SRR51670...82482.2 [26] QQLGGH> QALGGH QALGGH.prot

For this tutorial, we want to retrieve just those reads with perfect matches. If you are looking for different domains, you may prefer to include reads with just partial matches to the query.

To retrieve the reads, switch to the Folder Description List tab, click at the beginning of the row corresponding to the first hit, hold down the <shift> key, scroll down to the row corresponding to the last perfect match and click at the end of that row. You don't have to actually select an entire row – selecting any part of a row is treated as selecting the entire row. Note that if you want to retrieve all of the hits in a Folder Description List tab, you can simply choose Edit | Select All (<command>-A).

imes Folder Horizontal Map $ imes$ Folder	r Description List	× Folder Aligned Sequence
3164. SRR5167034.2573738.2	26 22	HISE0:206:C2788ACXX:8:1105:21199:157221 length=101
3165. SRR5167034.25820698.1	26 23	HISEQ:206:C2788ACXX:8:2304:21167:24789 length=101
3166. SRR5167034.25820698.2	26 23	HISEQ:206:C2788ACXX:8:2304:21167:24789 length=101
3167. SRR5167034.25908615.1	26 22	HISEQ:206:C2788ACXX:8:2304:18771:53939 length=101
3168. SRR5167034.25908615.2	26 22	HISEQ:206:C2788ACXX:8:2304:18771:53939 length=101
3169. SRR5167034.25946267.1	26 22	HISEQ:206:C2788ACXX:8:2304:6344:66318 length=101
3170. SRR5167034.25946267.2	26 22	HISEQ:206:C2788ACXX:8:2304:6344:66318 length=101
3171. SRR5167034.25953407.1	26 23	HISEQ:206:C2788ACXX:8:2304:14177:68514 length=101
3172. SRR5167034.25953407.2	26 23	HISEQ:206:C2788ACXX:8:2304:14177:68514 length=101
3173. SRR5167034.25980689.1	26 23	HISEQ:206:C2788ACXX:8:2304:16978:77628 length=101
3174. SRR5167034.25980689.2	26 23	HISEQ:206:C2788ACXX:8:2304:16978:77628 length=101
3175. SRR5167034.26032467.1	26 22	HISEQ:206:C2788ACXX:8:2304:9044:94803 length=101
3176. SRR5167034.26032467.2	26 22	HISEQ:206:C2788ACXX:8:2304:9044:94803 length=101
3177. SRR5167034.26104945.1	26 23	HISEQ:206:C2788ACXX:8:2304:17284:118426 length=101
3178. SRR5167034.26104945.2	26 23	HISEQ:206:C2788ACXX:8:2304:17284:118426 length=101
31/9. SKK516/034.2628/266.1	26 23	HISEQ:206:C2788ACXX:8:2304:9272:176783 length=101
3180. SRR5167034.26287266.2	26 23	HISEQ:206:C2788ACXX:8:2304:9272:176783 length=101
3181. SKK516/034.264/1896.1	26 23	HISEU:206:C2788ACXX:8:2305:3939:36204 lengtn=101
3102. SKK510/034.204/1090.2	20 23	HISEQ.200.02700ACAX.0.2305.3939.30204 Length=101
3103. SKK510/034.20402402.1 3104 SPEE167034 36403403 3	26 22	HISEQ:200:C2700ACXX:0:2305:7949:39400 Length=101
3185 SPP5167034 26640257 1	26 22	HISEQ.200.C2700ACAX.0.2303.7343.33400 Length=101
3186 SPD5167034 26640857 2	26 22	HISEQ.200.02700ACXX.0.2305.5007.00205 [ength=10]
3187 SRR5167034 26666884 1	26 22	HISEQ.200.02700ACXX.0.2303.3007.00203 [ength=10]
3188 SRR5167034 26666884 2	26 23	HISEQ:200.02788ACXX:8:2305:13152:95993 length=101
3189. SRR5167034.26666897.1	26 22	HISE0:206:C2788ACXX:8:2305:13705:95933 length=101
3190. SRR5167034.26666897.2	26 22	HISE0:206:C2788ACXX:8:2305:13705:95933 length=101
3191. SRR5167034.26693103.1	26 22	HISE0:206:C2788ACXX:8:2305:4407:103753 length=101
3192. SRR5167034.26693103.2	26 22	HISE0:206:C2788ACXX:8:2305:4407:103753 length=101

Finally choose **Database | Retrieve to File**... and choose a suitable file name, making sure to select **FASTQ Multiple Sequence** as the output file type;

Name Date Modified Size Kind Stoppbox Contigs 5/4/20, 1:06 PM Folder Coogle Drive Proteins 5/4/20, 1:06 PM Folder MelissaMadsenNGS PerfectHits.contigassembly 5/1/20, 1:31 PM 1.1 MB MacveProject Susan Gardner PerfectHits-1.fastq 5/1/20, 10:23 AM 8.2 MB FASTQquence	< > =• 1		RootAnalysis	٥	^	Q Search	
** Dropbox > Contigs 5/4/20, 1:06 PM Folder > Broteins 5/4/20, 1:06 PM Folder > Proteins 5/4/20, 1:06 PM Folder > PerfectHits-chastq 5/1/20, 1:31 PM 1.1 MB MacveProject > MelissaMadsenNGS > PerfectHits-frastq 5/1/20, 10:23 AM 8.2 MB FASTQquence > Susan Gardner > PerfectHits-2fastq 5/1/20, 10:23 AM 8.2 MB FASTQquence	avorites	Nan	ne	Date Mo	dified	 ✓ Size 	Kind
A Google Drive Proteins 5/4/20, 1:06 PM Folder MelissaMadsenNGS PerfectHits-contigassembly 5/1/20, 1:31 PM 1.1 MB MacveProject Susan Gardner PerfectHits-2.fastq 5/1/20, 10:23 AM 8.2 MB FASTQquence	St Dropbox	•	Contigs	5/4/20,	1:06 PM		Folder
Coogle Drive PerfectHits.contigassembly 5/1/20, 1:31 PM 1.1 MB MacveProject MelissaMadsenNGS PerfectHits-1.fastq 5/1/20, 10:23 AM 8.2 MB FASTQquence Susan Gardner PerfectHits-2.fastq 5/1/20, 10:23 AM 8.2 MB FASTQquence		•	Proteins	5/4/20,	1:06 PM		Folder
MelissaMadsenNGS PerfectHits-1.fastq 5/1/20, 10:23 AM 8.2 MB FASTQquence Susan Gardner PerfectHits-2.fastq 5/1/20, 10:23 AM 8.2 MB FASTQquence	Google Drive		PerfectHits.contigassembly	5/1/20,	1:31 PM	1.1 MB	MacveProject
Susan Gardner PerfectHits-2.fastq 5/1/20, 10:23 AM 8.2 MB FASTQquence	MelissaMadsenNGS		PerfectHits-1.fastq	5/1/20,	10:23 AM	8.2 MB	FASTQquence
	Susan Gardner		PerfectHits-2.fastq	5/1/20,	10:23 AM	8.2 MB	FASTQquence
			A 10 04-	F 14 10 0	40.00 414		Palalas

The reads are saved into a pair of files, with "-1" and "-2" appended to the filename. E.g. QALGGH-1.fastq and QALGGH-2.fastq.

Assembling Matching Reads

The next step is to assemble the reads into contigs. With luck, each contig will represent a different Zn finger gene, where they all contain one or more conserved QALGGH domains.

First create a File | New | Assembly Project. Then click on the Add Reads button and select the pair of fastq files you saved in the last section. MacVector has four separate *de novo* assembly algorithms, each of which has different characteristics and uses. *Flye* is used only for long read assemblies (e.g. Oxford Nanopore and PacBio reads). *Velvet* and *SPAdes* are tuned primarily for genomic assemblies of many millions of short reads. In this case, we are expecting the reads to assemble into a number of short cDNA-length contig sequences, rather than a single long genome. *Velvet* and *SPAdes* are not really optimized for this, type of assembly though in many cases they will generate reasonable results. However, for this data, the optimal algorithm to use is *phrap*. This is an older algorithm, originally optimized for Sanger sequencing data, but it does an extremely good job of assembling reads into a series of short contigs, even if there are few overlapping reads. The downside is that it can be slow with a large number of reads.

0 😑		Untitled	2 — Project		
Add Reads Add Seqs Add Ref A	dd Contig Remove Prefs Replica	Phred Cross	🙀 🤫 🍋 🌺 🗾 Match Phrap Bowtie SPAdes Velvo	et Flye	Q~ Name Filter
Project Prop					
Name	Basic	Advance	d Miscellaneous		ition
QALGGHhits-1.fasta	Pairwise Alignments		Filtering		s/kendall/Desktop/Aloe Vera/
QALGGHhits-2.fasta	Mismatch penalty:	-2	Minimum alignment score:	25	s/kendall/Desktop/Aloe Vera/
	Gap initiation penalty:	-4	Potential vector bases:	0	
	Gap extension penalty:	-3	Assembly		
	Banded search		Stringency:	5	
	Minimum match length:	14	Maximum gap:	5	
	Maximum match length:	30	Repeat stringency:	0.95	
	Consensus				
	Minimum segment size:	9	Node spacing:	8	
	Short Read Defaults De	faults	Cancel	ОК	
					_

Select the two reads, then click on the phrap toolbar button.

Click on the **Short Read Defaults** button to set up the optimal parameters for this data, then click **OK**. Because we are only using \sim 20,000 pairs of reads, and the reads are short (\sim 100nt each) the job completes in a moderate length of time (3 hours), resulting in a *Phrap* job appearing in the project window with \sim 60 contigs;

•	••				P	Perfe	ectHits	.contiga	ssembly	y — Project	t				
	Ϋ́Ξ		- 273	¥.	- QZ	0 1	\odot	- - -		्य	-		Q~Name		>>
Ad	d Reads	Add Seqs	Add Ref	Add Conti	g Remove	Reset	Prefs	Replica	Phred	CrossMatch	Phrap	Bowtie	F	ilter	
1	Proje	ct	Phrap Per	fectH	Covera	ge									
	Name			St	atus		Leng	gth∽	#	ClipL	С	lipR	Start	Stop	Definition
-91E	V Phra	ap Perfec	tHits-x - 1	3:30											
Æ	C	Contig 53						1007	1385	1		1007	1	1007	
€E.	C	Contig 58						981	2259	1		981	1	981	
€E.	C	Contig 49						978	436	1		978	1	978	
€E.	C	Contig 60						972	3030	1		972	1	972	
€E.	C	Contig 55						950	1494	1		950	1	950	
€E.	C	Contig 59						905	2588	1		905	1	905	
¶E.	C	Contig 56						882	1501	1		882	1	882	
¶E.	C	Contig 54						877	1458	1		877	1	877	
¶E.	C	Contig 52						854	714	1		854	1	854	
¶E.	C	Contig 57						822	1578	1		822	1	822	
¶E.	C	Contig 47						816	164	1		816	1	816	
₹E.	C	Contig 51						701	591	1		701	1	701	
₩.	C	Contig 43						675	96	1		675	1	675	
œ.	C	Contig 44						672	104	1		672	1	672	
Œ	C	Contig 42						665	79	1		665	1	665	
œ.	C	Contig 46						655	131	1		655	1	655	
Œ	C	Contig 48						639	182	1		639	1	639	
œ.	C	Contig 37						632	30	1		632	1	632	
€E.	C	Contig 35						608	24	1		608	1	608	
€E.	C	Contig 50						583	487	1		583	1	583	
€E.	C	Contig 41						578	78	1		578	1	578	
€E.	C	Contig 39						573	54	1		573	1	573	
€E.	C	Contig 34						548	22	1		548	1	548	
€E.	C	Contig 32						537	20	1		537	1	537	
€E.	C	Contig 45						518	108	1		518	1	518	
₹E.	C	Contig 40						506	55	1		506	1	506	
¶E.	C	Contig 38						505	34	1		505	1	505	
TE.	C	Contig 30						492	13	1		492	1	492	
-	0	Contig 36						469	27	1		469	1	469	

You can double-click on a contig to open the *Contig Editor* so that you can see the actual alignments. As we are hoping that each contig will represent a different Zn finger coding gene, lets save them all as individual MacVector .nucl sequences. Select the first contig, hold down <shift>, select the last contig, then choose File | Export Selected Contigs To... and choose a suitable destination directory.

Identification of Zn Finger Encoding Contigs

We can assume that every contig *should* have a DNA sequence that can potentially encode QALGGH. However, we cannot be sure that the corresponding DNA sequence actually lies inframe within a potential protein-coding region. So, let's, (a) confirm that each contig does indeed code for QALGGH and then (b) look to see if there is a potential ORF in the correct frame to include QALGGH in the predicted amino acid sequence.

Open the longest contig (Contig 53.nucl in our example, but yours may vary). You can actually perform the analysis that follows directly on the contigs from the project if you wish. Note: versions of MacVector prior to 18.0 retain gaps in the exported contigs. You should remove any gaps before performing analyses. The easiest way to do this is using the Edit | Find | Find function. Set up the Find dialog like this with the Literal box checked, a dash in the Find box, and empty Replace box and click Replace All (make sure to unlock the sequence);

Now we can search for QALGGH domains in the Contig 53.nucl window. Choose Edit | Find | Find.. once again but this time set up the dialog like this;

		Find	
		Feature Sequence	
Find:	QALGGH		~
Replace:			~
	Replace All	Literal Strand: Both Wrap Around Frame: All	0 0
	Replace & Find	Find Previous Find Next Find	

Note in particular to toggle the circled "mode" button to the protein symbol. This lets you search a DNA sequence with an amino acid sequence. If you type "QALGGH" into the **Find**: box and click on the **Find** button, you should see that the **Editor** tab updates to show this;

Initially, this may appear confusing as the highlighted sequence bears little resemblance to the search sequence. However, if you click on the **Display** toolbar button and select the **Show Plus Strand Translations** options all should become much clearer;

l	• • •					Contig 5	3.nucl — E	ditor					
	୍ 🎽 ୍			9	$ \sim $,		GACCG	· C	40	5:422	۲	~
	DNA	Unlocked	Text View P	refs Repli	ca Topolo	gy Blocking	Voice Ver	ify Display	Create		(18 bp)	Feature	s
	Edito	r 🦵	Мар	Featu	ires	Annotations							
	uProHisArg	ProGlyAla	A rgProAlaHi	sArgLysSer	SerAspAlal	euThrAla**	****ArgArg	SerAspValS	erCysSerGl	yAspGluGly	GlyCysArgA	spAsp***Al	
	AlaSerSerP	rolrpArgA	L aAlaSerPro	ProGinileP	he***CysPi	TCACCCCCTC	MetThrSer1	le***ArgGl	nLeuGlnArg	ArgArgArgA	rgLeuProAr	gArgLeuSer	
	decreatede		- ddeeAdeeeA	Cedennarei	TertaAracet	TEACCOCCIO	ATGACGTCGA	TETEREBIER	GETGERGEGG	AGACGAAGGC	000100000	480	
	lnHisTyrLy	sCysSerVa	l CysGlyLysA	laPheGlySe	rTy <mark>r</mark> GlnAla	a LeuGlyGlyH	islysAlaSe	rHisLysLys	LeuValLeuP	roProAlaSe	rAlaAspAsp	GlnHisSerA	
l	aAlaLeuGln	ValLeuGly	. euArgLysGl	yLeuArgIle	e LeuProser/	a laargargse	rGlnGlyGln	ProGlnLysA	laArgProSe	rThrArgLeu	ArgArg***P	roAlaGlnAr	le.
I	SerThrThrS	erAlaArgS	e rAlaGluArg	ProSerAspF	oroThrLysA	gSerAlaVal	ThrArgProA	laThrLysSe	rSerSerPhe	HisProProP	roProMetTh	rSerThrAla	
	AGCACTACAA	GTGCTCGGT	: TGCGGAAAGG	CCTTCGGATC	CTACCAAGCO	5 CTCGGCGGTC	ACAAGGCCAG	CCACAAAAAG	CTCGTCCTTC	CACCCGCCTC	CGCCGATGAC	CAGCACAGCG	18
l	1-6675					Custoutura	h = 0h = 41 = C =		1	4 - 1		600	
I	deutleAco	ArgGlyPro	icCluArgCl	nClyProPro	VollouCycl		nPheArgVal	GlySorGlyA	Leugiygiyn	1SLYSAFgCy	ProLou***A	rgAspAspAr	
l	BrollicArgP	roArgAlaP	n isotuArgot	GlySerThr	or AlalouP		LouSorArga	rgValArgAr	aTroAlaAla	ThrSorClvA	laThrMetTh	rGlyArgSor	
I	CCTCATCGAC			GEGETCLACCA			CTTTCGCGTC	GGGTCAGGCG	CTEGECEGEC		CCACTATGAC	GGGACGATCG	
	cerenteone			000100/00/	C OFOCICIÓN	Toccrement	crificocore	00010/00000		///////////////////////////////////////	cenermone	720	
	lySerGlyTh	rGlyValAl	a AlaAlaAlaA	laAlaAlaAl	aAlaAlaAla	a AlaGlySerG	lyValThrSe	rAlaSerAla	AlaSerGluG	lyAlaIleSe	rValThrAsn	HisArgGlyP	U
	gGluArgAsn	TrpSerCys	: ysSerCysSe	rCysSerCys	GlyCysGly0	G lyTrpLysTr	pSerTyrGlu	ArgLeuArgC	ysIleArgGl	yGlyAspLeu	GlyAsnLysP	roGlnGlyPh	
	GlyAlaGluL	euGluLeuL	uGlnLeuGln	LeuGlnLeuA	rgLeuArgA	gLeuGluVal	GluLeuArgA	laProProLe	uHisProArg	GlyArgSerA	rg***GlnTh	rThrGlyVal	
	GGAGCGGAAC	TGGAGTTGC	GCAGCTGCAG	CTGCAGCTGC	GGCTGCGGCG	G GCTGGAAGTG	GAGTTACGAG	CGCCTCCGCT	GCATCCGAGG	GGGCGATCTC	GGTAACAAAC	CACAGGGGTT	
												840	
	heAspLeuAs	pLeuAsnLe	J ProAlaMetP	roGluPheAl	aAlaPheGlu	u AlaSerProA	laAlaArgAr	gCysValAla	AlaProAspG	luGluGluVa	lGlnSerPro	LeuAlaPheL	

Now you can see that the match is to a potential translation on the plus strand (GlnAlaLeuGlyGlyHis). If you then click on Find Next in the Find dialog, a second domain should be selected;

						Contig 5	3.nucl — E	ditor				
ୁ 🖉 ଚ		Terretaria Terretaria Terretaria Terretaria Terretaria Terretaria	8	7-	\sim			GACCG	× ↔	55	5:572	🔁 ~
DNA	Unlocked	Text View P	refs R	eplica	Topolog	y Blocking	Voice Veri	fy Display	Create		(18 bp)	Features
Edito	r 🦵	Мар	Fe	eatures	A	nnotations						
uProHisArg	ProGlyAla	A rgProAlaH	i sArgLys	Ser Ser	AspAlaL	euThrAla**	****ArgArg	SerAspValS	erCysSerGl	yAspGluGly	GlyCysArgA	spAsp***Al
AlaSerSerP	roTrpArgA	l aĀlaSerPro	ProGln1	[leP he*	**CysPr	oHisArgLeu	MetThrSerI	le***ArgGl	nLeuGlnArg	ArgArgArgA	rgLeuProAr	gArgLeuSer
GCCTCATCGC	CCTGGCGCG	C GGCCAGCCC/	A CCGCAAA	АТСТ ТСТ	GATGCCC	TCACCGCCTG	ATGACGTCGA	TCTGACGTCA	GCTGCAGCGG	AGACGAAGGC	GGCTGCCGCG	ACGACTGAGC
												480
lnHisTyrLy	sCysSerVa	l CysGlyLys/	A laPheG1	lySe rTy	rGlnAla	LeuGlyGlyH	isLysAlaSe	rHisLysLys	LeuValLeuP	roProAlaSe	rAlaAspAsp	GlnHisSerA
aAlaLeuGln	ValLeuGly	L euArgLysG	l yLeuArg	Ile Leu	ProSerA	laArgArgSe	rGlnGlyGln	ProGlnLysA	laArgProSe	rThrArgLeu	ArgArg***P	roAlaGlnAr
SerThrThrS	erAlaArgS	e rAlaGluAra	g ProSer/	AspP roT	hrLysAr	gSerAlaVal	ThrArgProA	laThrLysSe	rSerSerPhe	HisProProP	roProMetTh	rSerThrAla
AGCACTACAA	GTGCTCGGT	C TGCGGAAAG	G CCTTCG	БАТС СТА	CCAAGCG	CTCGGCGGTC	ACAAGGCCAG	CCACAAAAAG	CTCGTCCTTC	CACCCGCCTC	CGCCGATGAC	CAGCACAGCG
												600
laSerSerTh	rAlaGlvPr	o ThrSerGlv/	A rgValH	isGl nCv	sSerVal	CvsLeuLvsT	hrPheAlaSe	rGlvGlnAla	LeuGlvGlvH	isLysArgCy	sHisTvrAsp	GlvThrIleG
gLeuIleAsp	ArgGlvPro	H isGluArgG	l nĞlvPro	Pro Val	LeuCvsL	euProGlnAs	pPheArgVal	GlvSerGlvA	laGlvArgPr	oGlnAlaVal	ProLeu***A	rgAspAspAr
ProHisArgP	roArgAlaP	r oArgAlaAla	GlySer	ThrS erA	lal euPh	eAlaSerArg	LeuSerArgA	rgValArgAr	gTrpAlaAla	ThrSerG1vA	laThrMetTh	rGlvArgSer
CCTCATCGAC	11120000000000000000000000000000000000	ACGAGCGGC	GGGTCC	ACCA GTG	CTCTGTT	TGCCTCAAGA	CTTTCGCGTC	GGGTCAGGCG	стобособсс	ACAAGCGGTG	CCACTATGAC	GGGACGATCG
												720
lvSerGlvTh	rGlvValAl	a AlaAlaAla/	A laAlaAl	aAl aAl	aAlaAla	AlaGlySerG	lvValThrSe	rAlaSerAla	AlaSerGluG	lvAlaIleSe	rValThrAsn	HisArgGlvP
gGluArgAsn	TroSerCvs	c vsSerCvsSe	rCvsSer	Cvs Glv	CysGlyG	lvTrpLvsTr	pSerTvrGlu	ArgLeuArgC	vsIleArgGl	vGlvAspLeu	GlvAsnLvsP	roGlnGlvPh
GlvAlaGluL	euGluLeuL	e uGlnLeuGlr	LeuGlnl	euA rgL	euArgAr	gLeuGluVal	GluLeuArgA	laProProLe	uHisProArg	GlvArgSerA	rg***GlnTh	rThrGlvVal
GGAGCGGAAC	TGGAGTTGC	T GCAGCTGCAG	G CTGCAGO	TGC GGC	TGCGGCG	GCTGGAAGTG	GAGTTACGAG	CGCCTCCGCT	GCATCCGAGG	GGGCGATCTC	GGTAACAAAC	CACAGGGGTT
												840
heAspl euAs	pl euAsni e	u ProAlaMetH	P roGluPh	neAl aAl	aPheGlu	AlaSerProA	laAlaArgAr	gCvsValAla	AlaProAspG	luGluGluVa	1G1nSerPro	LeuA1aPhel
	n+++n	. 1-01-001	- 4 1/- 1		V-14C	1		V-14C1C	1	-616161	A1-01-00	

This demonstrates that Contig 53 has not just one but TWO potential QALGGH domains. But, are they actually in a potential protein coding open reading frame?

To evaluate this, we need to look at the potential open reading frames in the contig. There are a number of approaches we can used for this. However, we have to be aware that the contig may not contain the entire coding region of the protein. In fact, it may not even include the AUG start codon. Click on the **Map** tab to view the graphical map of the sequence (note that this can also be done directly from the Contig **Editor** window);

Here we can see a pink arrow representing a potential protein-coding open reading frame on the plus strand.

Let's create a new protein sequence with the translation. Click on the pink arrow to select it, then choose **Analyze** | **Translation**... and click on the **New Protein** checkbox.

Analysis Options	
Segment(s) to Translate:	Append to Segments: 🗊
63/869;	
Genetic Code:	universal
	Phase: 1 ᅌ Strand: Plus ᅌ
New Protein Name: Translation	of Contig 53
Display Options	
Display codon usage table for "Seg	ments to Translate"
• As specified in "Segment(s) to t	ranslate"
As specified region with "Segme	ent(s) to translate"
As specified region.	
Region to Display: 63	to 869
?	Defaults Cancel OK

Note how the Segment(s) to Translate edit box is already set to the appropriate range and the Strand is set to Plus. When you click OK, a new protein sequence is created.

12200 HYKCSVCGKA FGSYQALGGH KASHKKLVLP PASADDQHSA SSTAGPTSGR VHQCSVCLKT FASGQALGGH KRCHYDGTIG SGTGVAAAAA AAAAAAGSG VTSASAASEG AISVTNHRGF DLDLNLPAMP EFAAFEASPA ARRCVAAPDE EEVQSPLAFK KPRFLIPA*

Now we can use Edit | Find | Find... to once again search for QALGGH, but this time the source is a protein sequence. You should be able to see that there are two QALGGH domains in the protein.

Finally, lets run an online BLAST search to confirm that this is indeed a zinc finger protein. With Translation of Contig 20 the active sequence, choose Database | Online Search for Similar Sequences (BLAST).

NCBI Website and Data Usage Policies and Disclaimers									
Program: blastp ᅌ Regio	on: from 1	to 269	۲						
BLAST Parameters									
Database: nr	C Expect: 10	\$							
🗹 Perform gapped alignment									
More Choices	Defaults	Cancel	ОК						
More Choices	Delauits	Cancer	UK						

In this case, the default settings are fine, so click **OK** to initiate the search. This runs an external search at the NCBI in Maryland, USA. Sometimes this completes within a few seconds, other times it may take a number of minutes depending on the server load and other factors. Once complete, press the **View** button if the result dialog does not automatically appear.

Translation of Contig 20 from 1 to 105										
Results		Display Options								
Database: Residues: Entries: Best E value: Highest Score: Expect: Matches Aligned:	nr 1,186,187,390 277,884,362 1.4e-32 304 1.0e+01 100	 Description list Entries to show: 1 to 100 Aligned sequences Entries to show: 1 to 100 Map 								
Jan San San San San San San San San San S		Entries to show: 1 to 100								
		Defaults Cancel OK								

Select all three **Display Options** and click **OK** to view the alignments.

• •	Translation of Contig 53 — Results	
\times BLAST Description List \times BLAST Aligned Sequence BLAST BLASTP 2.10.1+ Results Alignments	× BLAST Map	
BLAST Analysis for Sequence: Translation of Search from 1 to 269 Expect: 10 Low complexity filter: c Genetic Code: n/a Open cost: 11 Extend cost: 1	Contig 53 Program: blastp on Matrix: BLOSUM62 Gapped search: on	
Database: nr (101,765,175,729 residues Karlin-Altschul Statistics: Kappa = 0.041, Lambda = 0.267, Entropy =	in 282,858,011 sequences) = 0.14	
 >ref XP_008792675.1 zinc finger prote 	in ZAT10 [Phoenix dactylifera]	
Length = 238 Score = 196.4 bits (498), Expect = 1.56	2-58 Identities = 134/266 (50%), Positives = 159/266 (60%), Gaps = 50/266 (19%	
Query: 10 PALSETTTTMSDDQEPIPKF Subject: 16 PATSETSYEEF-PHVEGWAKF	RKRSKRPHHHYNNNHNNHRHQQTEEEYLALCLIALARGQPTANLLMPSPPDDVDLTSAAAETKAAAATTEQHYKCSVCGK 	
Query: 110 AFGSYQALGGHKASHKKL Subject: 103 AFASFQALGGHKASHRKLSGG	VLPPASADDQHSASSTAGPTSGRVHQCSVCLKTFASGQALGGHKRCHYDGTIGSGTGVAAAAAAAAAAAGSGVT 	
Query: 203 SASAASEGAISVTNHRGFDLI Subject: 182 GVASMSEGAGSSDKGF[DLNLPAMPEFAAFEASPAARRCVAAPDEEEVQSPLAFKKPRFLIPA 	
2. >gb RWW18042.1 hypothetical protein GV	/17_00017989 [Ensete ventricosum]	
Length = 249 Score = 193.7 bits (491), Expect = 2.56	e-57 Identities = 131/266 (49%), Positives = 155/266 (58%), Gaps = 59/266 (22%	
Query: 18 TTMSDDQEPPKRKRS Subject: 24 SEMSEDELPPVEGWAKRKRS	KRPHHHYNNNHNNHEHQQTEEEYLALCLIALARGQPTANLLMPSPPDDVDLTSAAAETKAAAATTEQHYKCSVCGKAFGS KRHRFFDHPPTEEEYLALCLMTLARGGSSHRLPLVSAASAAATPAPTAKVGFKCSVCGKAFGS	
Query: 114 YQALGGHKASHKKLVLPPAS/	\DDQHSASSTAGPTSGRVHQCSVCLKTFASGQALGGHKRCHYDGTIGSGTGVAAAAAAAAAAGSG	

At the time this tutorial was written, the most significant hits were all zinc finger proteins from *Phoenix dactylifera* (Date Palm), *Ensete ventricosum* (Ethiopian banana) and *Musa balbisiana* (Plantain), indicating we have likely "cloned" a zinc finger protein from *Aloe vera*.

Annotating the Sequences

Let's now add some simple annotation to the sequences.

Open Contig 53.nucl. Click on the single long plus strand ORF to select it. Then right-click on the selected graphic (or <ctrl>-click if you don't have a right mouse button) and choose **Create CDS Feature** from the popup menu. This creates a new CDS feature which appears by default as a blue arrow.

Double-click on the new annotation and switch to the Feature tab.

			Cont	ig 53.nucl			
			Feature	Symbol			
		Feature Ke	yword:	CDS	\$		
_ocation:							
Starts	Start Base	Stops	Stop	Base	Operation	GenBank	
At 🗘	63	At	\$ 869		Continuous ()	63869	
+-			Complem	entary Stran	d Ope	eration: Join	٢
Location in Gen	Bank Format:						
63869							
			ualifiers	Eree-Form			
[] =			dunners	Thee-Form			
Qualifier		Comments					
/codon_s	tart 🗘	268.00					\$
/translati	on Ó	MELEELP	MI PAI SET	TTTTMSDDQF	PIPKRKRSKRPHHHY	NHNHNHNEHOG	т
lems							
thing has shange	.d						
anng nas change							

Note that MacVector has already added a /translation qualifier, a /codon_start qualifier and a /note that lists the length of the coding region. Let's add some additional common qualifiers. Click on the + button in the lower left corner. This creates a new qualifier using /note. Click on the new /note entry and a popup menu will appear listing all of the valid qualifiers for a CDS feature. Choose /gene, then click in the adjacent Comments field and type in "Zn Finger".

		Qualifiers Free-Form	
Qualifier		Comments	
/codon_start	\$	1	0
/note	\$	268 aa	
/translation	0	MELEFLPMLPALSETTTTTMSDDQEPIPKRKRSKRPHHHYNHNHNHNEHQQT	
/gene	٥	Zn finger	

Another common qualifier is */product*, so we can add a new */product* qualifier with the value "Potential C2H2 zinc finger protein".

The Map tab will update to use the /gene qualifier as the new label;

Next, lets annotate the protein. Open Contig 53.prot and choose Database | Online Functional Domain Analysis (InterPro). This is an online service that will identify domains and other signatures in protein sequences hosted by the European Bioinformatics Institute. The first time you invoke the search you will be prompted to enter an e-mail address. This is purely to help reduce robot access and to help keep track of unique usage of the service for funding purposes– the EBI does NOT use your e-mail address for any marketing campaigns.

When complete (runs typically take from 30 seconds to 5 minutes) an interactive graphical results window appears.

	1 20	40 60	80 100	120	140	161	
Detailed sig	gnature	e match	es				
🗓 IPR036236	Zinc finge	r C2H2 super	family				+
						► SSF57667 (beta-beta)	+
IPR013087	Zinc finge	r C2H2-type					+
						PS00028 (ZINC_FINGE)	+
						 SM00355 (c2h2final6) 	+
no IPR	Unintegra	ted signature	S				
						► G3DSA:3.30.16	+
						 PF13912 (zr-C2H2_6) PTHR26374 (FAMILY N) 	+
						▶ PTHR26374:SF351	+

There are many links in the window that you can click on to learn more about the domains, features and signatures in the protein sequence. These links will open in your default Internet Browser. You can add any identified domains as annotations to the protein by clicking on the small + button at the right-hand side of the window. Once clicked on, the + will change to a check mark. The domains will then appear in the **Map** tab.

Editor	Мар	Features	Annotations						
Translation of Contig 53									
ZINC_FINGER_C2H2_1 ZINC_FINGER_C2H2_1									
100 200									

For this tutorial, we will annotate all of the proteins by clicking on the + button next to the PS00028 match to ensure all proteins are annotated consistently.

Identifying Additional Zinc Finger Encoding Genes

We can repeat the above steps using each of the other contigs from the initial assembly. Many will proceed exactly as described for Contig 53, but others may have issues that require additional analysis. Let's take a look at some of these cases.

Continuing down the list of contigs, sorted by length, Contig 58 has a single large ORF on the plus strand and can be analyzed and annotated just like Contig 53.

Contig 49 is a little different. In this case, the long ORF shows on the minus strand;

When running the Find for QALGGH you'll need to turn on the Show Complementary Strand and Show Minus Strand Translations from the Display toolbar button to see the GlnAlaLeuGlyGlyHis domains;

CATCC TCCACCCATC CATACTCCGA CGGCAGCAAG TTCAGGTCAA AATCCCTACT ACAGTTACTA TTACTAGTAT GTAGG AGGTGGGTAG GTATGAGGCT GCCGTCGTC AAGTCCAGTT TTAGGGATGA TGTCAATGAT AATGATCATA yAspG luValTrpGl yTyrGluSer ProLeuLeuA snLeuAspPh eAspArgSer CysAsnSerA snSerThrAs MetAr gTrpGlyAsp MetSerArgA rgCysCysTh r***ThrLeu IleGlyValV alThrValII eValLeuIle rpGly GlyGlyMetT rpValGlyVa lAlaAlaLeu GluPro***P heGly***Leu*******Tyr* TCCCA ATTGTGGTAC CTCTTGTGCC CACCTAAAGC CTGACCCGTC GGGAAATCCC TGAAGCAGAC ATTGCACCTG AGGGT TAACACCATG GAGACACCGS GTGGATATCG GAGCACCGGCAG CCCTTTAGGG ACTTCGTCTG TAACGTGGAC .spTrp AsnHisTyrA rgL GHisGl yGlyLeuAla GluG yThrP roPheAspAr gPheCysVal AsnCysArgH GlyL leThrThrGl yArg1mGiy Val LeuA rgValArgAr gSerIleGly SerAlaSerM etAlaGlyTh GlyLe uGlnProVal GluGInAlaT rpArgPheGl ySerGlyAsp ProPheGlyG InLeuLeuCy sGInValGn GAGGA ACTCCACCGG CACGATCCTT ACAGGCTCGA GCCCGATCGG CTCGGGTGG CTGACTTGT GGCCTCCGAGG CTGCT TGAGGTGGCC GTGCTAGGAA TGTCCGAGCT GGCCTAGCC GGAGGCCACC CAGCTGAACA CCGGAGCGC

You can still directly translate the ORF from the minus strand by selecting the gray arrow and choosing **Analyze | Translation**... as MacVector will automatically identify that the selection is a minus strand ORF and set the parameters appropriately. However, its often easier to work with coding regions on the plus strand, so we can "flip" the sequence. If you are working in the single nucleic acid sequence editor, choose **Edit | Select All** followed by **Edit | Reverse & Complement** to reverse and complement the entire sequence. If you are working in the contig **Editor** window, simply choose **Edit | Reverse & Complement**.

There is no need for you to perform this analysis yourself on all of the contigs as we've already done the hard work for you. You can download all of the annotated contigs and translated proteins from this link https://macvector.net/ContigsWith2Domains.zip..

For reference, the following Contigs have a single long zinc finger ORF on the plus strand: Contig 53, Contig 54, Contig 43, Contig 3, and these contigs have a single long zinc finger ORF on the minus strand: Contig 58, Contig 60, Contig 59, Contig 56, Contig 52, Contig 57, Contig 51, Contig 44, Contig 42, Contig 46, Contig 48. Other contigs require additional analysis, as described below.

Analysis of Contig 34

Contig 34 (548 nt in length) shows no long ORFs in the **Map** tab, but the contig has two QALGGH coding domains on the minus strand. So, it seems like it should encode a zinc finger protein. One likely possibility is that we simply do not have reads to cover the entire coding region (this contig has just 22 reads whereas many of the others had hundreds or even thousands). It may also be that there is a long ORF that crosses through the sequence but is missing a suitable start and/or stop codon.

By default, MacVector scans all opened DNA sequences for the presence of open reading frames. However, because the start and stop codons may not be present in our truncated sequence, we need to adjust the defaults. Choose MacVector | Preferences... and switch to the Scan DNA | Open Reading Frames tab;

	Scan DNA								
General Aligned View Color Font Internet	License Map View	Scan DNA	Text View	(O) Jodate					
Scan DNA Sequences for	ading Frames	Primers	Restriction	Sites					
Show open reading frames									
 Minimum Number of Codons: 50 Do not scan if sequence is over 1000 KB ✓ 5' ends are starts ✓ 3' ends are stops Codons after stops are starts ✓ Suppress annotated CDS ORFs 									
?	Defaults	5	Revert	Apply					

Select the **5'** ends are starts and **3'** ends are stops checkboxes then click Apply. This will allow the algorithm to identify ORFs that start and stop outside of the sequenced region. If we look at the Contig 34.nucl Map we should see that we do in fact have some open reading frames and that there is one on the minus strand that extends the full length of the sequence.

Note that if you have a sequence that is relatively short, or if your window is sized a bit larger than shown here, you may see the actual translation rather than just a grey arrow e.g.

🔴 🔴 🔮 Contig 20.nucl — Map									
ž 🗧 🦳		$\neg \sim$	S	*	Q₂ v 3	>>			
DNA Locked	Text View Prefs	Replica Topology	Graphics RE Picker	Digest Ligate	100%	Range			
Editor	Мар	Features	Annotations						
			Contig 20						
	Ndel (79)								
Bse	RI (64)								
I (11) Sacl	I (61) Xho	ol (111) ApaLl (135)							
LFPILPFFVSTDPWSP	DPSPRALCLLIWPPS/	ACPIANSSPQIEHSCT	LGLASVAF*						
		100		200		300			
KGINGKKTEVSGHLG	SGEGRAKHRRMHGGLA	QGIAFELGCISCEHVK	KPKAETAKQNDDDDDSS	QMFRLKKHSARHGGI	LAQFSRFRRSCTKC	EFVREDNQIKNSS			
						+			

Extending the Sequence of Contig 34

The next step is to try to extend the sequence of Contig 34 to include the entire coding region of the zinc finger protein. Again, we can do this using **Align to Folder**. Here, we are hoping to identify reads that overlap the ends of Contig 34 and that do not actually include the QALGGH coding region.

With Contig 34 active, choose **Database | Align to Folder**. This time we are searching starting with a DNA sequence, so we will use different parameters;

Search Folder
Data Choose
 Search in enclosed folders (recursively) Folder contains paired-end reads
Options
Hash Value: 14 Scores to Keep: 10000 Processing: Align S
Scoring Matrix
M DNA identity with penalties matrix.nmat
Open Choose
Region
1 to 319 💭
Defaults Cancel OK

The most critical change is that we will use the DNA identity with penalties matrix.nmat Scoring Matrix. To select this, click on the Choose button in the Scoring Matrix box and locate the file in /Applications/MacVector/Scoring Matrices/. This scoring matrix is tuned to identify perfect matches in the NGS reads, even if there is only a short overlap between the query sequence and a read. Make sure that your Search Folder is set to point to the fasta data and adjust the Hash Value to 12 or above (for speed) and the Scores to Keep to 10,000. Again, the search will take some time (3 to 8 hrs, depending on your machine) so you may want to let this go overnight.

When the search completes, save all of the reads in the Description List tab - I called mine "Contig34hits".

Now we are ready to assemble them. Use File | New | Assembly Project to create a new assembly project. With smaller projects like this (~50 pairs of reads) it is generally better to use the Add Seqs button to add the reads to the project, rather than Add Reads. This adds the reads as individual sequences, rather than as a disk-based fastq collection.

•	•				Unt	itled — P	roject					
	ta 🖓	÷.	the second	Œ		-		a la	0	Q~Nam	e	>>
Ac	d Reads Add Segs	Add Ref	Add Contia	Remove	Prefs	Replica	Phred	CrossMatch	Phrap		Filter	
	Project	Proper	tion	Covorac	11010	Ropilou	TINGU	Croconaton	Tinap			
	FIOJECT	Fioper	ties	Coverag							-	
	Name		Status		Len	igth ∽ ‡	¥	ClipL	CI	ipR	Start	Stop
2004	SRR5167034_	137202_1				101			1	101		
M	SRR5167034_	137202_2				101			1	101		
M	SRR5167034_	1253955_	1			101			1	101		
1964	SRR5167034_	1253955_	2			101			1	101		
M	SRR5167034_	1423658_	1			101			1	101		
100	SRR5167034_	1423658_	2			101			1	101		
200	SRR5167034_	2443176_	1			101			1	101		
100	SRR5167034_	2443176_	2			101			1	101		
M	SRR5167034_	2530571_	1			101			1	101		
10 00	SRR5167034_	2530571_	2			101			1	101		
10	SRR5167034_	3751194_1	1			101			1	101		
10 0	SRR5167034_	3751194_	2			101			1	101		
2004	SRR5167034_	3771434_	1			101			1	101		
10	SRR5167034_	3771434_	2			101			1	101		
2004	SRR5167034_	3787176_1	1			101			1	101		
10 0	SRR5167034_	3787176_	2			101			1	101		
10	SRR5167034_	3901603_	1			101			1	101		
10 0	SRR5167034_	3901603_	2			101			1	101		
2004	SRR5167034_	4988450	_1			101			1	101		
10	SRR5167034_	4988450	_2			101			1	101		
2000	SRR5167034_	5840473_	1			101			1	101		
M	SRR5167034_	5840473_	_2			101			1	101		
264	SRR5167034	6883809	1			101			1	101		

Again, we will use *phrap* to assemble the reads. You can either select all of the reads and then click on the **phrap** toolbar button, or you can make sure that no reads are selected and click on **phrap**. When nothing is selected, *phrap* operates on all of the reads in the project. Again, make sure you click on the **Short Read Defaults** option in the *phrap* dialog to make sure you are using the appropriate settings. When complete, you may have to scroll down the project to see the results;

•	•		Untitled	3 — 1	Project							
Ad	d Reads Add Seqs Add Ref Add C	e 🔮 🔯 ontig Remove Prefs	Replica	Phred	ा CrossMatch	鞭 Phrap	Bowtie	SPAd	Q~1	lame Filter	;	>>
1	Project Properties	Coverage										
	Name	Status	Length 🗸	#	ClipL		ClipR		Start	Stop	Defir	nitic
200	SRR5161731_10188915_2		151			1		151				
1966	SRR5161731_13357360_2		151			1		151				
264	SRR5161731_20657643_1		151			1		151				
264	SRR5161731_23157106_2		151			1		151				
264	SRR5161731_13357360_1		150			1		150				
264	SRR5161731_20657643_2		150			1		150				
264	SRR5161731_7790058_1		148			1		148				
% K	SRR5161731_20167066_1		148			1		148				
264	SRR5161731_15578131_1		142			1		142				
264	SRR5161731_15819695_1		126			1		126				
264	SRR5161731_15892556_1		118			1		118				
-9E.	Phrap 1 - 22:12 - May 11, 20											
₩.	Contig 3		984		80	1		984		1	984	
	Contig 2		245		7	1		245		1	245	
48.	Contig 1		230		2	1		230		1	230	

Here we can see that 3 contigs were generated. Contig 3 is 984 nt in length and contains 80 reads. This is undoubtedly the extended version of our original Contig 34. The other contigs are much shorter and only contain a few reads. If you open the short Contig 1 and run a BLAST search you will find that it does appear to encode a short section of a QALGGH zinc finger protein. It is presumably the result of a few reads that came from a different zinc finger protein than Contig 34 but were retrieved because they match the QALGGH domain. We will ignore this and focus on Contig 3.

Double-click to open Contig 3. If you look at the **Map** tab, you'll see that there is a long ORF extending in from the 5' end of the plus strand.

The ORF appears to terminate at a stop codon and, if you return to the **Preferences | Scan DNA | Open Reading Frames** tab and turn off the **5' ends are starts** and **3' ends are stops** checkboxes, you will find that the ORF remains and appears to have a reasonable start codon ~100 nt into the contig.

Lets save Contig 3 – the easiest way is to move to the Contig 3 Editor tab and then select File | Export Consensus As... and choose *MacVector NA Sequence Without Gaps* in the Format field;

	Save As:	Export Consensus	As:			
	Tags:					
		Contig34	۰ (Qs	earch	
Favorites	Name		Date Modified	~	Size	Kind
😻 Dropbox	🏴 Hits-1.fastq		Yesterday, 10:10	РM	18 KB	FASTQquence
A Google Drive	Hits-2.fastq		Yesterday, 10:10	РМ	18 KB	FASTQquence
MelissaMadsenNGS						
	Format:	MacVector NA Sequen	ce Without Gaps ᅌ			
New Folder					Cance	Save

To keep track of the different contigs we might generate in this analysis, its useful to name them appropriately - in this case we can save the sequence as Contig34.3 in a Contig 34 folder where we can keep all of the sequences related to this contig.

If we had not retrieved enough reads to completely cover the Contig 34 coding sequence, we could keep repeating the **Database | Align to Folder** analysis using this new Contig 34.3.nucl sequence and assemble the resulting hits until we finally cover the entire coding region. You can also repeat searches using just a hundred residues or so from one end of the contig – these often complete much more quickly.

Select the pink open reading frame, choose **Analyze | Translation**... and create a new protein. If you BLAST the resulting 215 aa protein, you'll see that it has reasonable matches to other plant zinc finger proteins and that, most crucially, the numbering and length of the matching protein sequences are very similar, giving us confidence that we have indeed recovered the entire coding sequence.

Finally we can **File** | **Save As**... the protein as Contig34.3.prot and then run *InterProScan* on the protein to annotate the QALGGH domains as we did previously. You can use similar approaches to extend many of the other contigs from the initial assembly.

Aligning Proteins to View Common Functional Domains

If you follow the above protocols for all of the contigs you will eventually find a total of 19 contigs that encode proteins containing two QALGGH domains (there are many more that contain just a single QALGGH domain). The data for this can be downloaded from https://macvector.net/ContigsWith2Domains.zip. Some immediate questions that come to mind are: (a) are these all unique proteins or are some duplicates, and (b) how are they all related? Each of the proteins in the sample set were annotated using *InterProScan* as described above, specifically choosing the PS00028 match. Let's align them and view the shared QALGGH domains;

First choose File | New | Protein Alignment to create a new MSAP multiple alignment window, then click on the Add Seqs toolbar button, select all of the files in the /Proteins/ folder of the sample set and click on the Open button. A new MSAP window appears;

Click on the Mode toolbar button and choose Show Features from the popup menu;

The window updates to show the features in the proteins as simple blocks above the residues;

• • •			Untit	tled — Editor				
Protein Unlocked	Mode Add Seqs	Align Phylo	ACGT ACGT geny Consensus	Prefs Replica	Blocking	AGCT ES	Groups Width	Color
Editor	Text	Pairwise	Matrix	Picture	Guide ⁻	Free Pro	ofile	
Contig 35	MKF	S F N Y S F R E	EDEMTNQS	TSLANFLI	L L <mark>S H R</mark> G E	TNRMSSER	VFECKTCNRR	FPSFQ
Contig 48	мкр	FDLFRDEE	E V E S V N M A	NVLVQLSR	G <mark>R</mark> G <mark>E</mark> V <mark>H</mark> G	R D G E A R S G	ERVFECKTCS	RQFQS
Contig 46	MAF	Y A T E E C A K	GKRSRRQR	S S N Q Y R P P	AQQEEYM			PPOSV
Contig 42	MNF	<mark>x s e t p k</mark> l l l	LLSSGVTS	SKVHAADQ	QKDRDFE		P T F Q A L G G H C	TSMKR
Contig 44	MKF	T F D L F S E E	RETVQSMN	VADVLILL	S R S S N K I	QNDERVFE	CKTCSRRFRS	FQALG
Contig 43	MKF	FRFGGEDH	M D S I S M A G	M L M F L S Q G	GGGSGDV	N R D N C E H S	G Q Q A G S G R V F	E C K T C
Contig 51	M K F	K F R A E E N A E	IDSINMAN	MLMLLASG	RSTDAIH	P Y N S P I K D	AGRMFECKTC	NRQFA
Contig 57	MLA	R G G P A A R S	S S D A <mark>K</mark> A A A	AEHKCSVC	GKSFASY	Q A L G G H K T	SHRPKLSEDG	NAGGS
Contig 52	MAH	R S S S D E L V	ALCLMMLA	NGDDSDRV	S S T K A L T	V <mark>S R Q R Q S</mark> L	<mark>D C S V C G K</mark> V F S	S Y Q A L
Contig 59	MPS	R I T K P T K L	SYISRRIS	YQPYTNSL	SLSLSTF	MAPRSSAD	E L V A L C L M M L	ANGDD

Align the sequences by clicking on the Align toolbar button and selecting **ClustalW** from the dropdown menu. Accept the defaults and click **OK**. After a few seconds, the display updates;

•			Untitle	d — Editor			
Protein Unlocked	Mode Add	Seqs Align	Phylogeny Consensus Pr	efs Replica	AGCT AGCT Blocking Dots	Line Wrap Groups	Width Color
Editor	Text	Pairwise	Matrix	Picture	Guide Tree	Profile	
Contig 49		<mark>S S D E</mark>	L V A L <mark>C L M M</mark> L A <mark>N</mark> G	DDSDR		- V S S T K A P A A	S R Q H R P F D C
Contig 58		Q S E E E	<mark>C L A L C L I M L A R</mark> G	<mark>C P</mark> A A <mark>K</mark>		2 G T G A D H G H E V	<mark>к</mark> аа <mark>ен</mark> - к <mark>с</mark>
Contig 53		E H Q Q T E E E	Y L A L <mark>C</mark> L I A L A <mark>R</mark> G	Q P T A N L L M	PSPPDDVDL	「 S A A A E T K A A A	A T T E Q H Y K C
	consensus	E	. A L L A G				R F C
		120	130	140	150	160	170
Contig 34.3		GACKKVFR	SYQALGGHRASH	K K T N G C V P J	A P A P A R - A A /	Q I <mark>H E</mark> V E S S <mark>P</mark> A '	V A N A <mark>D R</mark> V H H
Contig 45.1		K T C N R R F K	K F Q A L G G H C T S H	K R S L		<mark>K</mark> L G A <mark>T R T</mark>	K L K P - K V D H
Contig 50.1		K T C S K R F S	S F Q A L G G H R A S H	KKPK-LS-		<mark>D D H H Q K P</mark> A S	P A E S K P K V H
Contig 35		KTCNRRFP	S F Q A L G G H R A S H	KKLR-LQS		D D E H N K - A T	DG <mark>KP</mark> KMH
Contig 48		KTCSRQFQ	S F Q A L G G H R A S H	KKPR-LS-		<mark>E E E R K</mark> V - G V	E E K S K A K V H
Contig 46		S V C G <mark>K</mark> A F S	S Y Q A L G G H K A S H	K K P A L A A T	<mark>s</mark>	<mark>S S V I P</mark> A	DEA <mark>KPH</mark>

If you click on the **Guide Tree** tab, you can see a very basic phylogenetic tree showing the relationships between the proteins. Note that this is NOT a true phylogeny, just a rough guide that <u>*ClustalW*</u> used to work out the order to assemble the multiple alignment. However, it clearly shows that none of the proteins are identical;

This can be seen in numerical form in the **Matrix** tab – this displays a table of the relatedness of each sequence in the alignment in a spreadsheet-like form. You can see that on the diagonal where each sequence is obviously identical to itself, but all of the other values are less than 100%, indicating that we have 19 distinct proteins;

Protein Unlock	ked Alig	n Phylo	pgeny Con	CGT CGT sensus Pre	fs Replic	~ a								
Editor		Text	Pa	irwise	Ma	rix 🥤	Picture	e 🖉	Guide Tree	•	Profile			
Multiple Alig Open Gap Delay Div Similarit	gnment Par Penalty = vergent = ty Matrix:	ameters: 10.0 E 30% G gonnet	xtend Gap ap Distan	Penalty = ce = 4	θ.2									
Contig 34.3 Contig 45.1 Contig 35.1 Contig 35 Contig 48 Contig 48 Contig 48 Contig 42 Contig 42 Contig 53 Contig 53 Contig 55 Contig 56 Contig 58 Contig 58 Contig 53	Contig 34.3 100.0 24.3 27.3 25.7 28.6 26.1 26.4 26.3 22.5 22.5 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.1 33.6 31.0 30.2 ************************************	Contig 45.1 14.4 100.0 40.8 41.4 39.0 26.7 61.4 34.7 61.4 34.7 24.5 33.3 28.4 23.7 32.8 33.7 32.8 33.7 32.8 33.7 19.8 8 3.7 25.8 33.7 32.8 33.7 33.7 32.8 33.7 33.7 32.8 33.7 33.7 32.8 33.7 32.8 33.7 33.7 32.8 33.7 33.7 32.8 33.7 33.7 32.8 33.7 33.7 33.7 32.8 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33	Contig 50.1 19.1 31.3 100.6 61.5 71.1 31.6 43.2 61.1 54.1 49.7 33.5 29.0 22.4 33.5 32.1 33.5 32.1 33.5 22.9 es (%)	Contig 35 18.6 32.8 51.7 100.0 71.0 31.8 44.8 66.3 51.3 48.0 61.3 48.0 21.7 32.4 23.3 31.9 31.9 31.9 23.7	Contig 48 16.7 30.2 57.2 60.2 100.0 30.8 42.9 65.9 54.0 53.8 42.9 55.6 32.1 22.8 35.6 32.1 22.8 36.2 36.2 36.2 36.2 22.5	Contig 46 19.5 22.3 20.3 22.6 28.2 32.1 27.9 30.8 39.2 37.7 37.2 40.1 42.2 39.6 34.4 35.3	Contig 42 14.4 54.2 32.4 33.1 30.5 17.9 100.0 44.3 42.6 38.6 38.6 24.2 35.3 24.2 23.8 34.2 23.8 31.2 34.2 24.2 24.2 24.2 24.2 24.2	Contig 44 15.5 29.3 50.9 57.6 54.0 21.9 31.7 100.0 47.7 52.4 35.1 32.3 1 30.3 35.1 30.3 35.1 30.3 35.1 32.1 30.3	Contig 43 17.0 30.5 43.2 41.3 45.0 20.4 30.6 37.8 100.0 42.6 37.8 100.0 42.6 37.8 100.0 42.5 33.0 31.2 33.0 22.5	Contig 51 15.3 27.2 40.8 39.4 45.1 20.8 29.5 42.4 37.5 100.0 22.9 32.6 28.5 22.4 32.6 28.0 32.6 28.0 32.6 21.2 21.5	Contig 57 16.6 15.1 14.8 13.5 16.3 24.2 14.2 15.1 14.7 17.0 000 33.7 28.9 63.2 34.0 35.7 33.0 47.9 35.9	Contig 52 20.5 23.0 24.9 22.9 28.6 23.4 21.3 22.9 28.6 23.4 21.3 22.9 28.6 23.4 21.3 23.4 21.6 23.4 21.3 33.9 93.1 19.3 33.9 93.5 11 22.9 23.9 23.9 23.9 23.9 23.9 23.9 23.9	Contig 59 20.2 19.1 22.4 20.2 21.9 25.5 20.2 19.4 18.8 20.1 36.4 83.4 83.4 83.4 83.4 83.6 33.9	Co 56

Finally, if you click on the **Picture** tab, you should see the QALGGH "C2H2" zinc finger domains outlined something like this;

• • •					Untitled	— Picture			
572	<u> </u>	E.	/ 🐥	ACGT A-GT		V AGCT			
Protein Ur	nlocked Mode	Align	Phylogeny	Consensus F	Prefs Replic	a Dots			
Edit	or Te	xt	Pairwise	Ma	atrix	Picture	Guide Tree	Profile	
Contig 53	MELE FLP	MLPALS	ЕТ	- TTTTMSD	DQEPIPKF	KRSKRPHHI	HYNHNHNHNEHQ	QTEEEYLALCL	IALARGQPTANLLMF
						. 5		E .A.L	LA G
0	110	v Ric Room	120 alu la	130	140	1	50 160	170	180
Contig 34.3	TDSSTPSSSS	NETCKT	CNRRFKKE	QALGGHRA	SH CRSTL.	VPAPAPAR		RTKLKP KVDH	A CVICGL RESTGOAL
Contig 50.1	NRRE R	VFECKT	CSKRFSSF	OALGGHRA	SHKKPK-I	. S	DDHHOK P	ASPAESKPKVH	ECSICGLEFAVGOAI
Contig 35	MSSE R	VFECKT	CNRRFPSF	QALGGHRA	SHKKLR-I	QS	DDEHNK -	ATDGKPK MH	CSICGLEFTIGQAI
Contig 48	R S G E R	VFECKT	CSRQFQSF	QALGGHRA	SHKKPR - I	S	E E E R K V -	G V E E K S K A K V H	ECSICGLEFAIGQAI
Contig 46	Q S VN S	SYKCSV	CGKAFSSY	QALGGHKA	SHKKPALA	ATS	S S V I	PADEA KPH	CCTICYKRFKSGQAI
Contig 42	KD R	DFECKT	CHRRFPTF	QALGGHCT	SHKRS		KLGPR	TPKLKPRVVSH	ECPLCGLKFSMGQAI
Contig 44	QNDE R	VFECKT	CSRRFRSF	QALGGHRA	SHKLRFN	1Q S S	DDDDDNQK -	ATEAKPKK - VH	ECSICGLEFAIGQAI
Contig 43	HSGQQAGSGR	VFECKT	CNRQFPSF	QALGGHRA	SHKKPR			· · · · · · · · · · · · · · · · · · ·	ECSVCGLEFAIGQAI
Contig 51	KDAG	MEECKI	CNROFASE	QALGGHRA	SHKKPK-1		DEDEVK-		ECSTCGLEFARGQAI
Contig 57	A AAAE	H-KCSV	CCEVESEV	QALGGHKI	SHOPKLSE	EDGN - AGGSI	PAISSSII	DOSTREGE SU	CSVCFRAFPSGQAL
Contig 59	KAPAASROH	PELCSV	CCKVFSSV	OALGGHKS	SHERPIGI	EPVRIV	PVEFVSA	GGSSNSGR-SH	E CNV CER DEPT COAL
Contig 56	A	HAKCSV	CGKSFASY	OALGGHKT	SHEPKLSF	DGN - AGGS I	PAT	GVSSS-SGKVH	CSVCEKTEPSGOAL
Contig 54	KAPAASROR	PELCSV	CGKVESSY	OALGGHKS	SHRPIGI	EPVRIV	PVEEVSA	GGSSNSGR - SH	RCNVCFRDFPTGOAL
Contig 60	SCRSSPEOOS	SFKCSV	CGKAFSTY	OALGGHKS	SHRRPAEL	EFIKIATPS	SP PPSSATA	AGSKVSGGGTH	RCNVCFKEFATGOAL
Contig 49	KAPAASROH	PFLCSV	CGKVFSSY	OALGGHKS	SHRRPIGI	EPVRIV	P V E F V S A	G G S S N S G R - S H	RCNVCFRDFPTGOAL
Contig 58	MGMEVKAAAE	H-KCSV	CGKSFASY	QALGGHKA	SHRPKRSE	DGSGAGGS	PATSVTNSSSTT	G V S S S W S G R V H	CCSVCFKTFPSGQAI
Contig 53	TKAAAATTEQ	HYKCSV	CGKAFGSY	QALGGHKA	SHKLVLF	PAS ADDO	QHS ASSTA	G P T S G R V H	CSVCLKTFASGQAI
-	R	F.CSV	CGK F SY	QALGGHKA	SHK . Р.			. Н	CSVCF .GQAI
	210	_	220	230	240	2	50 260	270	280
Contig 34.3	APITVASSSM	IVSSSAA.	ASPNMMTM	SSADGN			CGKKKSIES	LIDLNLPAPME	EDAEQSAVSDVE FVN
Conug 45.1		D HLR	KELMLDLN	ULKELE				FDDDEFE	5 H O K KWICK A CITIT DITH

If your display doesn't look exactly like this, click on the **Prefs** toolbar button. The shading and colored domain outlining are controlled by the **Picture Shading** tab;

	Editor	Consei	nsus	lext View	Picture Fonts	Picture Shading
	Treat sim	ilarities a	iden	tities		
Identiti	es	:	Similarit	ies	Mismatches	
♥ O In ♥ Be	utline verse old hade Dark Medium Light Very Ligh	nt	V Ou Inv Bo V Sh	utline verse Id ade Dark Medium Light Very Light	Lower c: Gray Tey Domain Outlini All Outline Also fill Opaci	ase xt ing Visible Features Width: 3.0 pt domain regions ity: 34% \$
Problems						
Nothing	has change	d.				
Defaults	s R	evert	A	pply		Cancel OK

The line length and other font information is controlled by the Picture Fonts tab.

Editor	Consensus	Text View	Picture Fonts	Picture Shading	
Font Options					
Title:		н	elvetica 16.0 pt		
Names:		н	elvetica 11.0 pt		
Numbering:		ŀ	lelvetica 9.0 pt		
Sequence:		Tin	nes Roman 10.0 pt		
Title: Formatted Numbering None O	l Alignments Top Side			Line length:	100
Problems					
Nothing has change	∍d.				
Defaults	evert A	Apply		Cancel	OK

Conclusions

This tutorial demonstrates how you can use MacVector to "clone" interesting genes from RNA-Seq data in the NCBI short read archive. One key is the use of the **Database | Align to Folder** function to identify the few reads from a large data set that encode proteins of interest. This dramatically simplifies the assembly process, allowing even fairly weakly expressed genes to be retrieved and assembled. Without this enrichment step, it is likely that there would not be enough overlapping reads present to allow fast NGS assemblers like *Velvet* and *SPAdes* to successfully assemble all of the potential genes.